( 数组和矩阵) 565. 数组嵌套 ——【Leetcode每日一题】

❓565. 数组嵌套

难度:中等

索引从 0 开始长度为N的数组 A,包含 0N - 1 的所有整数。找到最大的集合 S并返回其大小,其中 S[i] = {A[i], A[A[i]], A[A[A[i]]], ... } 且遵守以下的规则。

假设选择索引为 i 的元素 A[i]S 的第一个元素,S 的下一个元素应该是 A[A[i]],之后是 A[A[A[i]]]... 以此类推,不断添加直到 S 出现重复的元素。

示例 1:

输入: A = [5,4,0,3,1,6,2]
输出: 4
解释:
A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2.

其中一种最长的 S[K]:
S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}

提示:

  • 1 < = n u m s . l e n g t h < = 1 0 5 1 <= nums.length <= 10^5 1<=nums.length<=105
  • 0 <= nums[i] < nums.length
  • A中不含有重复的元素。

💡思路:图

我们可以从 inums[i] 连边,我们可以得到一张有向图。由于所有数范围都在 [0, N−1],且不重复,因此至少存在一个环,而问题本质是求所有环的最大长度。

遍历数组nums,遍历过程中防止某些环被重复处理,对于当前经过的 nums[i] 标记为 -1,这样每个数被访问的次数最多不超过 3 次,整体复杂度为 O ( n ) O(n) O(n)

🍁代码:(Java、C++)

Java

class Solution {
    public int arrayNesting(int[] nums) {
        int ans = 0;
        for(int i = 0; i < nums.length; i++){
            int cnt = 0;
            for(int j = i; nums[j] != -1; ){
                int tmp = nums[j];
                nums[j] = -1;
                j = tmp;
                cnt++;
            }
            ans = Math.max(ans, cnt);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int arrayNesting(vector<int>& nums) {
        int ans = 0;
        for(int i = 0; i < nums.size(); i++){
            int cnt = 0;
            for(int j = i; nums[j] != -1; ){
                int tmp = nums[j];
                nums[j] = -1;
                j = tmp;
                cnt++;
            }
            ans = max(ans, cnt);
        }
        return ans;
    }
};
🚀 运行结果:

在这里插入图片描述

🕔 复杂度分析:
  • 时间复杂度 O ( n ) O(n) O(n),其中 n 为数组的长度。
  • 空间复杂度 O ( 1 ) O(1) O(1),我们只需要常数的空间保存若干变量。

题目来源:力扣。

放弃一件事很容易,每天能坚持一件事一定很酷,一起每日一题吧!
关注我 leetCode专栏,每日更新!

注: 如有不足,欢迎指正!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

酷酷的懒虫

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值