Patch and Depth-based CNNs in Face Anti-Spoofing

本文提出了一种双通道CNN网络用于人脸防伪,包括局部Patch-Based CNN和全卷积Depth-Based CNN,结合两种网络的输出进行融合判断。论文使用CASIA-FASD、MSU-USSA和Replay Attack数据集进行实验,展示了网络对活体和伪人脸的有效分类。
摘要由CSDN通过智能技术生成

2. Face Anti-Spoofing Using Patch and Depth-based CNNs

这篇文章是人脸防伪领域比较容易理解,适合入手的一篇,主要运用到了两个CNN网络,根据输入图像的细节特征以及深度图特征来进行判别。

2.1 论文概述
  • 文章创新点:提出了一个双通道的CNN网络用于人脸防伪;
  • 运用到的两个网络:

(1)卷积神经网络(CNN),输入是固定尺寸的局部图片,输出是一个分类score,网络部分对输入的局部特征进行深层提取,并根据输出的分类score判断这种局部特征是属于spoof or live。

(2)全卷积网络(FCN),输入是整张人脸图像,尺寸不固定,经过多层卷积网络的特征提取以及SVM得到分类结果是spoof or live。

(3)将两个网络得到的结果通过某种方式进行融合,得到最终输出。

  • 采用的数据集:CASIA-FASD / MSU-USSA / Replay Attack
2.2 论文涉及的两个网络(配合图解说明)

【图1】 双流网络的可视化结果

图1

(1)左边是Patch-Based

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值