2. Face Anti-Spoofing Using Patch and Depth-based CNNs
这篇文章是人脸防伪领域比较容易理解,适合入手的一篇,主要运用到了两个CNN网络,根据输入图像的细节特征以及深度图特征来进行判别。
2.1 论文概述
- 文章创新点:提出了一个双通道的CNN网络用于人脸防伪;
- 运用到的两个网络:
(1)卷积神经网络(CNN),输入是固定尺寸的局部图片,输出是一个分类score,网络部分对输入的局部特征进行深层提取,并根据输出的分类score判断这种局部特征是属于spoof or live。
(2)全卷积网络(FCN),输入是整张人脸图像,尺寸不固定,经过多层卷积网络的特征提取以及SVM得到分类结果是spoof or live。
(3)将两个网络得到的结果通过某种方式进行融合,得到最终输出。
- 采用的数据集:CASIA-FASD / MSU-USSA / Replay Attack
2.2 论文涉及的两个网络(配合图解说明)
【图1】 双流网络的可视化结果
(1)左边是Patch-Based