gplearn改进:gplearnplus介绍

gplearnplus

对gplearn进行升级,适应时序数据和面板数据,适用于更多的场景
且在函数参数中区分分类数据和数值型数据,可兼容类似于groupby等操作
github链接:gplearnplus
与gplearn类似的细节可参考前文
gplearn原理解析及参数分析

_Program

构建,调用公式树模块,
对象为_Program
属性program为栈形式的公式树

公式树的形式

在这里插入图片描述
该公式表达是为
( ( X 0 × X 0 ) − ( 3.0 × X 1 ) ) + 0.5 ((X_0 \times X_0) - (3.0 \times X_1)) + 0.5 ((X0×X0)(3.0×X1))+0.5

program结果栈为:
['add', 'sub', 'mul', '0', '0', 'mul', 3.0, '1', 0.5]

公式树初始化

build_program
通过stack对树进行深度优先搜索构建

Y
N
Y
N
Y
N
Y
Y
N
N
Y
N
Y
Y
N
N
选择根函数,必
须返回数值向量
工作栈stack中插入
根函数参数列表
结果栈program中
插入根函数
工作栈stack非空
判断工作栈中最后一个
函数的第一个参数
1.该节点必须接受向量
2.当前深度比最大深度低
3.随机种子选中了函数
或者模式为'full'
异常,工作栈不得为空
插入函数
成为子树节点
插入向量或标量
成为叶子节点
该节点是否可接受
分类函数和数值函数
所有函数中随机挑选
相应的分类或
数值函数中随机挑选
工作栈stack中插入
相应函数参数列表
结果栈program中
插入相应函数
若参数不接受标量或
const_range为空或
随机数选中向量
存在分类向量且
参数接受分类向量且
随机数选中分类向量
结果栈program中
插入该分类向量,
类型为字符串数字
结果栈program中
插入该数值向量,
类型为字符串数字
若该节点接受
浮点类型标量
结果栈program中
插入范围内随机浮点
标量,类型为浮点
结果栈program中
插入范围内随机整型
标量,类型为整型
工作栈stack中弹出
最后一个函数的
最后一个参数节点
工作栈stack
最后一个函数
参数列表为空
工作栈stack中弹出
最后一个函数的
工作栈为空
返回结果栈program
公式树初始化完成
工作栈stack中弹出
最后一个函数的
最后一个参数节点

树的检验

validate_program
对树一次深度优先搜索,保证所有节点完备,即每一个函数参数量足够
_depth
深度优先搜索的同时记录最大深度
_length
返回program长度,即树的节点数量

树的打印

__str__:打印树
export_graphviz:可视化整个树

公式树的计算

execute:接受pandas或者二位nd_array,shape = [n_samples, n_features]
执行过程中,将program中的字符串和常数处理成可接受参数

  • 常数需要广播成常向量
  • 字符串转换为输入X中对应的列
  • 若数据类型为面板数据panel,X中需要额外输入证券列和时间列,

raw_fitness:原始适应度

  1. 由公式树计算出 y ^ \hat{y} y^
  2. y ^ \hat{y} y^进行调整
  3. 计算 y y y y ^ \hat{y} y^的适应度metric

fitness:带惩罚项适应度
p e n a l t y = p _ c o e f × p r o g r a m _ l e n × s i g n ( m e t r i c ) penalty=p\_coef \times program\_len \times sign(metric) penalty=p_coef×program_len×sign(metric)

样本选择(防止过拟合)

为了防止过拟合,仅选择部分样本
get_all_indices 输入总样本量和抽样样本量
返回抽样内样本index和抽样外样本index

公式树交叉变异

get_sub_tree(random_state, program=None):获取子树

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量化就是探索生活

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值