Fama-Macbeth回归及因子统计
引言
本文介绍的因子统计方法基于1973年Fama和Macbeth为验证CAPM模型而提出的Fama-Macbeth回归,该模型现如今被广泛用被广泛用于计量经济学的panel data分析,而在金融领域在用于多因子模型的回归检验,用于估计各类模型中的因子暴露和因子收益(风险溢价)。
Fama-Macbeth与传统的截面回归类似,本质上也与是一个两阶段回归,不同的是它用了巧妙的方法解决了截面相关性的问题,从而得出更加无偏,相合的估计。
时间序列回归
Fama-Macbeth模型与传统截面回归相同,第一步都是做时间序列回归。在因子分析框架中,时间序列回归是为了获得个股在因子上的暴露。如果模型中的因子是 portfolio returns(即使用投资组合收益率作为因子,例如Fama-French三因子模型中的SMB,HML和市场因子),那么可以通过时间序列回归(time-series regression)来分析 E [ R i ] E[R_i] E[Ri]和 β i \beta_i βi在截面上的关系。(本文举例的因子都是portfolio returns)
令 f t f_t ft为因子组合在t期的收益率, R i t R_{it} Rit为个股 i i i在t期的收益率,用 f t f_t ft对每只股票的 R i t R_{it} Rit回归,即可得到每支股票的全样本因子暴露 β i \beta_i βi。
R i t = α i + β i f t + ε i t , t = 1 , 2 , . . . , T ∀ i R_{it}=\alpha_i+\beta_if_t+\varepsilon_{it},t=1,2,...,T \forall i Rit=αi+βift+εit,t=1,2,...,T∀i
也可滚动计算某个时间段的因子暴露 β i t \beta_{it} βit,体现个股随市场的变化设置时间段长度为 p e r i o d period period
R i k = α i + β i t f k + ε i k , k = t − p e r i o d , 2 , . . . , t ∀ i R_{ik}=\alpha_i+\beta_{it}f_k+\varepsilon_{ik},k=t-period,2,...,t \forall i Rik=αi+βitfk+ε