算交叉熵lossFunction报错“1D target tensor expected, multi-target not supported”的解决办法

用pytorch完成字符识别分类任务时,发现loss = lossFunction(out, labels)报错
同样的代码在MNIST数据集上就没有报错,原因是数据载入类型不符合规范

输入labels维度应该为1维,且精度不能是Double,必须换成long

修改后的数据导入代码:

dataset = pandas.read_csv('letter-recognition.data', header=None)
data = np.array(dataset)
# 划分训练集和测试集
X_train = data[:16000, 1:]   # [16000,16] 取前16000个数据
X_train_label = data[:16000, 0:1]  # [16000,1] 取标签
for lb in range(len(X_train_label)):  # 字符变数字
    X_train_label[lb, 0] = ord(X_train_label[lb, 0]) - ord('A')
X_train_label = X_train_label.reshape(16000,)  # 修改成一维,不然会报错
X_train = torch.from_numpy(X_train.astype(float))  # 变成tensor类型
X_train_label = torch.from_numpy(X_train_label.astype(float))

在计算交叉熵时的代码:

lossFunction = torch.nn.CrossEntropyLoss()
loss = lossFunction(out, labels.long())  # 修改数据精度
展开阅读全文
©️2020 CSDN 皮肤主题: 大白 设计师: CSDN官方博客 返回首页
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值