【365天深度学习训练营】第6周:好莱坞明星识别

第6周:好莱坞明星识别

一、前期准备

我的环境:
语言环境:Python3.8
编译器:jupyter notebook
深度学习环境:TensorFlow-GPU2.3

1.1 使用GPU

import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers,models
import os,PIL,pathlib
import matplotlib.pyplot as plt
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')

if gpus:
    gpu0 = gpus[0]
    tf.config.experimental.set_memory_growth(gpu0,True)
    tf.config.set_visible_devices([gpu0],"GPU")
print(gpus)

可以通过打印出的来检查是否启用GPU,使用CPU的可以忽略这步
在这里插入图片描述
如上图为成功使用GPU进行训练。否则为[].

1.2 导入数据

使用k同学提供的数据集一共分为 17 类,分别存放于 48-data 文件夹中以 17 个好莱坞明星名字命名的子文件夹中,此处我是用的绝对路径。

# 2.导入数据
#image_count = len(list())
data_dir = "G:/study/48-data/"
data_dir = pathlib.Path(data_dir)

1.3 查看数据

image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)

在这里插入图片描述

打开一张图片:

roses = list(data_dir.glob('Jennifer Lawrence/*.jpg'))
PIL.Image.open(str(roses[1]))

在这里插入图片描述

二.数据预处理

1.加载数据
使用 image_dataset_from_directory 方法将磁盘中的数据加载到 tf.data.Dataset 中

batch_size = 32
img_height=224
img_width = 224

#训练集
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.1,
    subset="training",
    label_mode = "categorical", #导入的目标数据,进行onehot编码
    seed= 123,
    image_size=(img_height,img_width),
    batch_size= batch_size
    )

Found 1800 files belonging to 17 classes.
Using 1620 files for training.
tf.keras.preprocessing.image_dataset_from_directory() 的参数:

  • directory, # 存放目录

  • labels=“inferred”, # 图片标签

  • label_mode=“int”, # 图片模式

  • class_names=None, # 分类

  • color_mode=“rgb”, # 颜色模式

  • batch_size=32, # 批量大小 image_size=(256, 256), # 从磁盘读取数据后将其重新调整大小。

  • shuffle=True, # 是否打乱

  • seed=None, # 随机种子

  • validation_split=None, # 0 和 1之间的数,可保留一部分数据用于验证。如:0.2=20% - - - - -

  • subset=None, # “training” 或 “validation”。仅在设置 validation_split
    时使用。

  • interpolation=“bilinear”, # 插值方式:双线性插值

  • follow_links=False,#是否跟踪类子目录中的符号链接

# 验证集

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.1,
    subset="validation",
    label_mode = "categorical",
    seed= 123,
    image_size=(img_height,img_width),
    batch_size= batch_size
    )

Found 1800 files belonging to 17 classes.
Using 180 files for validation.

class_names =train_ds.class_names
print(class_names)

['adidas', 'nike']

2.可视化数据

plt.figure(figsize=(20,10))

for images,labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5,10,i+1)
        
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[np.argmax(labels[i])])
        
        plt.axis("off")

在这里插入图片描述

3.检查数据

#检查数据格式
for image_batch,labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

(32, 224, 224, 3)
(32, 17)

  • Image_batch是形状的张量(32,224,224,3)。这是一批形状224x224x3的32张图片(最后一维指的是彩色通道RGB)。
  • Label_batch是形状(32,)的张量,这些标签对应32张图片

4.配置数据集

  • shuffle() :打乱数据

  • prefetch() :预取数据,加速运行

  • cache() :将数据集缓存到内存当中,加速运行

#配置数据集
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size = AUTOTUNE)

5.构建cnn

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255,input_shape=(img_height,img_width,3)),
    
    layers.Conv2D(16,(3,3),activation = 'relu',input_shape=(img_height,img_width,3)), # 卷积层1,卷积核3*3 
    layers.AveragePooling2D((2,2)),#池化层
    layers.Conv2D(32,(3,3),activation = 'relu'),#卷积层2
    layers.AveragePooling2D((2,2)),#池化层2
    layers.Dropout(0.5),
    layers.Conv2D(64,(3,3),activation = 'relu'),
    layers.AveragePooling2D((2,2)),#池化层3
    layers.Dropout(0.5),
    layers.Conv2D(128,(3,3),activation = 'relu'),
    layers.Dropout(0.5),
    
    layers.Flatten(),
    layers.Dense(128,activation ='relu'), # 全连接层,特征进一步提取
    
    layers.Dense(len(class_names))
])
model.summary()

在这里插入图片描述

四.训练模型

4.1 设置动态学习率

  • 损失函数(loss):用于衡量模型在训练期间的准确率。
  • 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
  • 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置学习率
initial_learning_rate = 0.1

lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate,
    decay_steps=10,
    decay_rate=0.92,
    staircase=True

)
# 指数衰减学习率送入优化器
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)

model.compile(optimizer=optimizer,
             loss= tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy']
             )

学习率大与学习率小的优缺点分析:
学习率大

优点:
加快学习速率。
有助于跳出局部最优值。
缺点:
导致模型训练不收敛。
单单使用大学习率容易导致模型不精确。
学习率小:
优点:
有助于模型收敛、模型细化。
提高模型精度。
缺点:
很难跳出局部最优值。
收敛缓慢

4.2 早停与保存最佳模型参数

EarlyStopping()参数说明:

monitor: 被监测的数据。

min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。

patience: 没有进步的训练轮数,在这之后训练就会被停止。

verbose: 详细信息模式。

mode: {auto, min, max} 其中之一。 在 min 模式中, 当被监测的数据停止下降,训练就会停止;在 max 模式中,当被监测的数据停止上升,训练就会停止;在 auto 模式中,方向会自动从被监测的数据的名字中判断出来。

baseline: 要监控的数量的基准值。 如果模型没有显示基准的改善,训练将停止。

estore_best_weights: 是否从具有监测数量的最佳值的时期恢复模型权重。 如果为 False,则使用在训练的最后一步获得的模型权重。

from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping

epochs = 100

# 保存最佳模型参数
checkpointer = ModelCheckpoint('best_model.h5',
                              monitor='val_accuracy',
                              verbose=1,
                              save_best_only=True,
                              save_weights_only=True)

#设置早停
earlystopper = EarlyStopping(monitor='val_accuracy',
                            min_delta=0.001,
                            patience=20,
                            verbose=1)

4.2.训练模型

#开始训练 
history = model.fit(
    train_ds,
    validation_data=val_ds,
    epochs=epochs,
    callbacks=[checkpointer,earlystopper]
)

训练过程如下所示,一直在0.5左右,显然是学习率过大,导致模型不收敛。
在这里插入图片描述
在这里插入图片描述

五.模型评估

#模型评估
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(len(loss))

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述
指定图片预测

from PIL import Image
import numpy as np


# 加载效果最好的模型权重
model.load_weights('best_model.h5')



img = Image.open("G:/study/48-data/Jennifer Lawrence/003_963a3627.jpg")  #这里选择你需要预测的图片
img = np.array(img)
image = tf.image.resize(img, [img_height, img_width])

img_array = tf.expand_dims(image, 0) 

predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])

在这里插入图片描述
搭建VGG-16网络框架失败,后期补充

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值