faster RCNN _Proposal_Layer 学习记录

参考https://blog.csdn.net/weixin_41693877/article/details/107159304

大概过程

(1)生成所有anchor
(2)根据回归得到的 偏移量预测数据,对生成的anchor进行修正,并且将超出原图边界之外部分的边框修正到边界,即proposal
(3)利用网络预测的得分,对proposal进行排序,取靠前的部分。再对proposal进行NMS,取前2000个作为结果。

1 生成所有anchor

https://blog.csdn.net/weixin_43436587/article/details/108082934 可以移步目标数据生成部分。

2 修正proposal

		# 生成anchor后,首先利用回归网络对anchor进行偏移修整, (batch, 16650, 4)
		# 回归得到的是一个偏移量,利用得到的偏移量对原本的anchor进行修正
		#anchors 是之前生成的,bbox_deltas是回归分支输出
        proposals = bbox_transform_inv(anchors, bbox_deltas, batch_size)

        # 2. clip predicted boxes to image
        # 严格限制proposal的四个角在图像边界内
        # 将超出图像范围的边框修整到图像边界,(batch, 16650, 4)
        proposals = clip_boxes(proposals, im_info, batch_size)
        

3 取得分较高的proposal进行NMS

        scores_keep = scores  # (batch, 16650)
        proposals_keep = proposals # (batch, 16650, 4)
        _, order = torch.sort(scores_keep, 1, True)

	    output = scores.new(batch_size, post_nms_topN, 5).zero_()
        for i in range(batch_size):
            proposals_single = proposals_keep[i] # 取出单个样本的候选框
            scores_single = scores_keep[i]       # 取出单个样本的前景概率
            order_single = order[i]    # 取出单个样本的的前景概率排序索引

             # 选取前12000个(训练阶段)
            if pre_nms_topN > 0 and pre_nms_topN < scores_keep.numel():
                order_single = order_single[:pre_nms_topN]

            # 取得分最高的前12000(训练阶段)
            proposals_single = proposals_single[order_single, :]
            scores_single = scores_single[order_single].view(-1,1)
            
            # 进行NMS
            keep_idx_i = nms(torch.cat((proposals_single, scores_single), 1), nms_thresh, force_cpu=not cfg.USE_GPU_NMS)
            keep_idx_i = keep_idx_i.long().view(-1)

            # 最终选择前2000个,作为最终的Proposal输出
            if post_nms_topN > 0:
                keep_idx_i = keep_idx_i[:post_nms_topN]
            proposals_single = proposals_single[keep_idx_i, :]
            scores_single = scores_single[keep_idx_i, :]

            # padding 0 at the end.
            num_proposal = proposals_single.size(0)
            output[i,:,0] = i
            output[i,:num_proposal,1:] = proposals_single

取出的样本的scores_single、scores_single、以及order,根据order选出scores、proposals、排在前12000的部分,进行NMS,取前2000个作为输出。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值