胸部x射线分类-一个多标签和细粒度的问题
摘要
ChestX-ray14数据集在现有文献中被认为是一个通用的图像分类问题.这个特定的数据集具有以下特性:1)许多肺病理在视觉上是相似的;2)单次扫描(多个标签)中可能出现大量疾病,包括肺癌、肺结核和肺炎。3)正常实例数量远远多于异常(不平衡数据)。这些特性在医学领域很常见。现有文献使用最先进的DensetNet/Resnet模型进行转移学习,其中网络的输出神经元针对单个疾病进行训练,以满足每张图像中多个疾病标签的需要。然而,在本文中我们提出了一种新的基于softmax概念的误差函数(Multi-label softmax Loss, MSML)来解决多标签和数据不平衡的问题。我们设计了基于细粒度分类方法的卷积深度网络,并结合了MSML。我们已经在各种网络骨干上评估了我们提出的方法,并在ChestX-ray14数据集上展示了AUC-ROC评分的性能改善。提出的误差函数为提高更宽医学数据的性能提供了一个新的方向
1.介绍
胸部x光检查是最常用的放射学检查之一,用于筛查肺部疾病,x光可以以最小的程序步骤执行。尽管如此,每次扫描都能发现多种可疑疾病,如肺结核、肺炎等。计算机辅助检测与诊断(CADx)一直是医学研究的热点。胸部x光的计算机辅助设计有可能成为放射科医生的一种经济有效的辅助工具。人工智能和机器学习的最新进展表明,深度学习技术在解决各种x射线分析任务方面具有优势,包括图像分类、基于NLP的分析和本地化。深度学习的数据驱动特性得益于CT、MRI、x射线等可公开获取的医学影像数据量的不断增加。然而,将一般图像分类任务中的直接转移学习应用于胸部x线乃至更广泛的医学成像领域的肺部疾病检测,存在一些挑战,可能会阻碍这种改进。首先,与ImageNet中的类别不同,ImageNet中的许多类别来自WordNet的不同分支,肺x射线中大量病理之间的高度相似性很难解释和区分.其次,在一次医学扫描中来自各种潜在病理的模式要求模型学习大量可能的标签集进行预测,这些标签集的大小与标签空间的大小成指数关系(标签数为 C C C,标签集预测值为为 2 C 2^C 2C).第三,像标准迁移学习方法那样,仅仅使用二元交叉熵损失的sigmoid,不能充分考虑疾病标签之间的类不平衡和压倒性的正常样本等问题.这些挑战推动了对创新学习机制的需求,这种机制既要考虑不同类之间的细微差异,也要考虑任务的多标签性质.
本文介绍胸部x线检查肺部疾病的两项贡献:
1. 首先,我们对这个问题提供了一个细粒度的视角,其中细粒度图像分类被定义为对视觉上相似的子类别进行分类的问题.这促使我们从细粒度分类领域探索和重新适应双线性池化方法.
2.其次,针对多标签学习的特点,提出了一种多标签SoftMax损耗(MSML)神经网络.我们进一步将MSML的思想与双线性池化相结合,提出了一种在深度学习环境下进行多标签学习的新机制.
2.方法
令 Y = { 1 , 2 , … , C } Y =\{1,2,…, C\} Y={ 1,2,…,C}为标签的有限集, T r a i n = { ( i n p u t n , y n ) } n = 1 N Train = \{(input^n, y^n)\} ^N_{n=1} Train={ (inputn,yn)}n=1N为训练集,其中 i n p u t n input^n inputn为第N个输入, y n y^n yn为对应的标签。标签 y ∈ { 0 , 1 } C y∈\{0,1\} ^C y∈{ 0,1}C,如果有第c个标签则 y c = 1 y_c = 1 yc=1,否则为0. x ∈ ( X = R d ) x∈ (X=\mathbb{R}^d) x∈(X=Rd)为d维特征向量的输入空间,我们的目标是学习一个带有参数 θ θ θ, h θ : R d → R C h_θ:\mathbb{R}^d \to \mathbb{R}^C hθ:Rd→RC的多标签假设,以便准确地输出预测到每一类.
2.1多标签学习损失
假设在训练集上的误差函数定义为 E = ∑ i = 1 N E i E = \sum_{i=1}^NE^i E