线性预测与线性拟合

本文介绍了布林带的构成及其在股市波动中的作用,接着探讨了线性预测和线性拟合的概念,包括在不同维度下的线性方程以及如何通过最小二乘法进行拟合。同时,文章还涉及数组操作、协方差和相关性分析,以及多项式运算和拟合的应用,展示了在数据分析中寻找趋势和关联的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

布林带

布林带由三条线组成:
中轨线:5日加权移动平均线
上轨线:中轨+2.5日标准差(这只股票顶部的压力)
上轨线:中轨-2.5日标准差(这只股票底部的支撑力)
布林带收窄代表趋于稳定,如果布林带张开代表有较大的波动空间.

sma53 = np.convolve(
    closing_prices, core, 'valid')
mp.plot(dates[4:], sma53, color='violet',
        linewidth=2, label='SMA-5(3)')

# 绘制5日均线的布林带
stds = np.zeros(sma53.size)
for i in range(stds.size):
    stds[i] = closing_prices[i:i + 5].std()
# 底部支撑线 和 顶部压力线
lowers = sma53 - 2 * stds
uppers = sma53 + 2 * stds
# 绘制布林带
mp.plot(dates[4:], lowers,
        color='limegreen', label='Lower')
mp.plot(dates[4:], uppers,
        color='orangered', label='Upper')
mp.fill_between(
    dates[4:], lowers, uppers,
    uppers > lowers,
    color='dodgerblue', alpha=0.3)
线性预测与线性拟合

线性预测

在二维世界(x,y),线性方程表示为一条直线; 在三维世界(x,y,z),线性方程表示为一个平面.再高的维度常人无法感受.但是线性方程依然存在.

假设一组数据符合一种线性规律, 那么就可以预测未来将会出现的数据.

a  b  c  d  e  f  ?

ax + by + cz = d
bx + cy + dz = e
cx + dy + ez = f
预测:
dx + ey + fz = ?

计算机如何解三元一次方程组?
[ a b c b c d c d e ] × [ x y z ] = [ d e f ] \left[ \begin{array}{ccc} a & b & c \\ b & c & d \\ c & d & e \\ \end{array} \right] \times \left[ \begin{array}{ccc} x\\ y\\ z\\ \end{array} \right]= \left[ \begin{array}{ccc} d\\ e\\ f\\ \end{array} \right] abcbcdcde×xyz=def

# a矩阵为3*3的矩阵, b矩阵为等号右边的矩阵
# c即是[xyz]矩阵
c = np.linalg.lstsq(a, b)[0]

案例: 预测AAPL下一天的股价

# 整理五元一次方程组, 最终预测一组股票的走势
N = 3
pred_prices 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值