数学建模 聚类模型

“物以类聚,人以群分”,所谓的聚类,就是将样本划分为 由类似的对象组成的多个类的过程。聚类后,我们可以更加 准确的在每个类中单独使用统计模型进行估计、分析或预测; 也可以探究不同类之间的相关性和主要差异。

1、K-means聚类算法

1、算法流程

一、指定需要划分的簇[cù]的个数K值(类的个数);
二、随机地选择K个数据对象作为初始的聚类中心 (不一定要是我们的样本点);
三、计算其余的各个数据对象到这K个初始聚类中心 的距离,把数据对象划归到距离它最近的那个中心所 处在的簇类中;
四、调整新类并且重新计算出新类的中心;
五、循环步骤三和四,看中心是否收敛(不变),如 果收敛或达到迭代次数则停止循环;
六、结束。

2、图解K-means算法

在这里插入图片描述

K‐均值聚类可视化动画

3、算法流程图

在这里插入图片描述

4、K-means算法的评价

1、优点:

(1)算法简单、快速。
(2)对处理大数据集,该算法是相对高效率的。

2、缺点:

(1)要求用户必须事先给出要生成的簇的数目K。
(2)对初值敏感。
(3)对于孤立点数据敏感。

K‐means++算法可解决2、3两个缺点。

2、K-means++算法

1、基本原则

初始的聚类中 心之间的相互距离要尽可能的远。

2、算法描述

步骤一:随机选取一个样本作为第一个聚类中心;
步骤二:计算每个样本与当前已有聚类中心的最短距离(即与最 近一个聚类中心的距离),这个值越大,表示被选取作为聚类中心的概率较大;最后,用轮盘法(依据概率大小来进行抽选)选出下一个聚类中心;
步骤三:重复步骤二,直到选出K个聚类中心。选出初始点后,就继续使用标准的K-means算法了。

3、spss操作

3、k-means算法讨论

(1)聚类的个数K值怎么定?
答:分几类主要取决于个人的经验与感觉,通常的做法是多尝试几个K值, 看分成几类的结果更好解释,更符合分析目的等。

(2)数据的量纲不一致怎么办?
答:如果数据的量纲不一样,那么算距离时就没有意义。例如:如果X1 单位是米,X2单位是吨,用距离公式计算就会出现“米的平方”加上“吨的平方” 再开平方,最后算出的东西没有数学意义,这就有问题了。

4、系统(层次)聚类

系统聚类的合并算法通过计算两类数据点间的距离,对 最为接近的两类数据点进行组合,并反复迭代这一过程,直 到将所有数据点合成一类,并生成聚类谱系图。

1、系统(层次)聚类算法流程

系统(层次)聚类的算法流程:
一、将每个对象看作一类,计算两两之间的最小距离;
二、将距离最小的两个类合并成一个新类;
三、重新计算新类与所有类之间的距离;
四、重复二三两步,直到所有类最后合并成一类;
五、结束。

2、分类准则:距离近的样品聚为一类

3、样品与样品之间的常用距离(样品i与样品j)

在这里插入图片描述

4、指标与指标之间的常用“距离”(指标i与指标j)

在这里插入图片描述

5、类与类之间的常用距离

1、由一个样品组成的类是最基本的类;如果每一类都由一 个样品组成,那么样品间的距离就是类间距离。

2、如果某一类包含不止一个样品,那么就要确定类间距 离,类间距离是基于样品间距离定义的,大致有如下几种 定义方式:

最短距离法

在这里插入图片描述

最长距离法

在这里插入图片描述

组间平均连接法

在这里插入图片描述

组内平均连接法

在这里插入图片描述

重心法

在这里插入图片描述

6、过程

在这里插入图片描述

7、spss软件操作

在这里插入图片描述

8、聚类谱系图(树状图)

谱系图是较新的Spss版本添加的功能 横轴表示各类之间的距离 (该距离经过了重新标度) 聚类的个数可以自己从图中决定。

9、用图形估计聚类的数量

肘部法则(Elbow Method):通过图形大致的估计出最优的聚类数量。
在这里插入图片描述
K越大,J越小,可以根据折线下降趋势,设定类别数

5、DBSCAN算法

DBSCAN(Density-based spatial clustering of applications with noise)是Martin Ester, Hans-PeterKriegel等人于1996年提出 的一种基于密度的聚类方法,聚类前不需要预先指定聚类的 个数,生成的簇的个数不定(和数据有关)。该算法利用基 于密度的聚类的概念,即要求聚类空间中的一定区域内所包 含对象(点或其他空间对象)的数目不小于某一给定阈值。 该方法能在具有噪声的空间数据库中发现任意形状的簇,可 将密度足够大的相邻区域连接,能有效处理异常数据。

算法可视化

1、基本概念

DBSCAN算法将数据点分为三类:
核心点:在半径Eps内含有不少于MinPts数目的点
边界点:在半径Eps内点的数量小于MinPts,但是落在核心 点的邻域内
噪音点:既不是核心点也不是边界点的点

2、matlab代码

3、优缺点

优点:

  1. 基于密度定义,能处理任意形状和大小的簇;
  2. 可在聚类的同时发现异常点;
  3. 与K-means比较起来,不需要输入要划分的聚类个数。
    缺点:
  4. 对输入参数ε和Minpts敏感,确定参数困难;
  5. 由于DBSCAN算法中,变量ε和Minpts是全局唯一的,当聚类的密度不均匀时,聚 类距离相差很大时,聚类质量差;
  6. 当数据量大时,计算密度单元的计算复杂度大。

5、方法选择

只有两个指标,且你做出散点图后发现数据表现得很“DBSCAN”,这时 候你再用DNSCAN进行聚类。 其他情况下,全部使用系统聚类吧。 K‐means也可以用,不过用了的话你论文上可写的东西比较少。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值