《Adaptive Graph Convolutional Neural Networks》论文理解

1.AGCN模型框架

AGCN由多个连续层组合而成,其核心层为SGC-LL层。层组合包括一个SGC-LL层,一个批处理归一层和一个图最大池化层。在每个SGC-LL层训练残差图Laplacian,并在接着一层图池层。在下一个SGC-LL层之前,自适应图(固有+残差图)一直被重用,因为SGC-LL会变换特征,所以下一个SGC-LL需要重新训练一个新的残差图。
在进过上述组合层(SGC-LL层,批处理归一层,图最大池化层)后,批处理的图形结构将被更新,而图形大小保持不变。由于任何图像粗化或特征平均都将破坏信息性局部结构的完备性。所以,最大池化的时候不跳过任何顶点。如果对网络进行图预测任务,图聚合层是将是最后一层。
在这里插入图片描述

2.SGC-LL Layer

SGC-LL Layer是这篇论文的主要工作,它对《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》 中的ChebNet模型进行了改善。作者认为,图的拓扑结构是固有的,它仅仅表示物理连接,不能充分表达出针对特定任务的所有有意义的拓扑结构,但是,原始的拉普拉斯矩阵依然包含了大量有用的图结构信息;所以设计出可学习的残差图拉普拉斯矩阵来调整原始的拉普拉斯矩阵,使得新的拉普拉斯矩阵包含那些无法直接在原始的图上学习到的由虚拟顶点连接组成的子结构。残差图拉普拉斯矩阵表示的子结构如下图中AGCN的虚线所示:
在这里插入图片描述
公式标号按照论文《Adaptive Graph Convolutional Neural Networks》中一样,所以标号有跳跃。
归一化拉普拉斯矩阵:
L = I − D − 1 / 2 A D − 1 / 2 (2) L=I-D^{-1/2}AD^{-1/2}\tag2 L=ID1/2AD1/2(2)

C h e b N e t ChebNet ChebNet中的图卷积公式:
y = g θ ( L ) X g θ ( L ) ≈ ∑ k = 0 K − 1 θ k T k ( L ~ ) L ~ = 2 L / λ m a x − I n (3) \begin{aligned} &y=g_{\theta}(L)X\\ &g_{\theta}(L)\approx\sum_{k=0}^{K-1}\theta_{k}T_{k}(\tilde{L})\\ &\tilde{L}=2L/\lambda_{max}-I_{n} \end{aligned}\tag3 y=gθ(L)Xgθ(L)k=0K1θkTk(L~)L~=2L/λmaxIn(3)

对于图结构数据,连通节点之间的相似度可能低于未连通节点,所以欧氏距离已不再是度量顶点相似性的好的度量指标。
作着利用泛化的马氏距离作为相似性度量指标:
D ( x i , x j ) = ( x i − x j ) T M ( x i − x j ) (6) D(x_i,x_j)=\sqrt{(x_i-x_j)^TM(x_i-x_j)}\tag6 D(xi,xj)=(xixj)TM(xixj) (6)

其中 M M M为对称的半正定矩阵,对称矩阵都可以分解成矩阵和矩阵转置的乘积,即 M = W d W d T M=W_dW_d^T M=WdWdT,所以 W d ∈ R d × d W_d\in R^{d\times d} WdRd×d为SGC-LL Layer的训练参数。然后利用该距离计算高斯核:
G x i , x j = e x p ( − D ( x i , x j ) / ( 2 σ 2 ) ) (7) G_{x_i,x_j}=exp(-D(x_i,x_j)/(2\sigma^2))\tag7 Gxi,xj=exp(D(xi,xj)/(2σ2))(7)

将矩阵 G G G归一化后就得到了残差图拉普拉斯矩阵对应的邻接矩阵 A ^ \hat A A^。将其带入公式(1)可以得到归一化残差图拉普拉斯矩阵 L ^ \hat L L^
虽然直接利用 L ^ \hat L L^带入公式(2)实现图卷积,由于原始的拉普拉斯矩阵依然包含了大量有用的图结构信息,并且为了加速训练和提高学习到的拓扑结构的稳定性,所以使得 L ^ \hat L L^作为残差图拉普拉斯矩阵以加权系数的方式与原始的拉普拉斯矩阵 L L L相加,得到新的拉普拉斯矩阵 L ^ \hat L L^
L ^ = L + α L r e s (9) \hat L=L+\alpha L_{res}\tag9 L^=L+αLres(9)

其中 L r e s L_{res} Lres表示归一化残差图拉普拉斯矩阵。
在利用 L ^ \hat L L^带入公式(2)计算图卷积后,作者认为在图卷积是不同顶点的同一特征创建和训练单独的拓扑结构,在经典的CNN网络中,卷积层的输出特征是最后一层的所有特征图的和,这些特征图是由独立的滤波器计算出来的,所以新特性不仅建立在相邻的顶点上,而且还依赖于顶点内特征。为了构造顶点内和顶点间特征的映射,在图卷积后加上了一层全连接层:
Y = ( g θ ( L ^ ) X ) W + b (8) Y=(g_{\theta}(\hat L)X)W+b\tag8 Y=(gθ(L^)X)W+b(8)

SGC-LL Layer的算法如下所示:
在这里插入图片描述

3.Graph Max Pooling

图最大池化是按特征进行的,取该节点和它邻域节点特征的最大值来更新节点的特征值:
x ^ v ( j ) = m a x ( x v ( j ) , x i ( j ) , ∀ i ∈ N ( v ) ) \hat x_v(j)=max({x_v(j),x_i(j),\forall i\in N(v)}) x^v(j)=max(xv(j),xi(j),iN(v))

4.Graph Gather

图聚合层逐节点对所有的顶点特征向量求和作为图数据的表示。聚合层的输出向量将用于图级预测。没有图形收集层,AGCN也可以训练和用于顶点的预测任务,给定的标签上的顶点。顶点方面的预测包括社交网络等方面的许多预测。

5.Bilateral Filter

在AGCN中使用双边滤波器层的目的是防止过度拟合。 残差图Laplacian肯定会适应模型以更好地适合训练任务,但是存在过度拟合的风险。 为了减轻过度拟合,我们引入了经过修正的双边滤波层,通过增加拉普拉斯矩阵L的空间局部性来规范SGC-LL层的激活,同时引入了批量归一化层以加快训练速度。

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制,可以提高模型的性能和效率。它通过对每个通道的特征图进行加权,使得网络可以更好地学习到重要的特征。ECA-Net的设计简单,易于实现,并且可以与各种深度卷积神经网络结构相结合使用。 ### 回答2: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制。 ECA-Net通过提出一种名为"Efficient Channel Attention"(ECA)的注意力机制,来增强深度卷积神经网络的性能。通道注意力是一种用于自适应调整不同通道的特征响应权重的机制,有助于网络更好地理解和利用输入数据的特征表示。 相比于以往的注意力机制,ECA-Net采用了一种高效且可扩展的方式来计算通道注意力。它不需要生成任何中间的注意力映射,而是通过利用自适应全局平均池化运算直接计算出通道注意力权重。这种方法极大地降低了计算和存储开销,使得ECA-Net在实际应用中更具实用性。 在进行通道注意力计算时,ECA-Net引入了两个重要的参数:G和K。其中,G表示每个通道注意力的计算要考虑的特征图的大小;K是用于精细控制计算量和模型性能之间平衡的超参数。 ECA-Net在各种视觉任务中的实验结果表明,在相同的模型结构和计算资源下,它能够显著提升网络的性能。ECA-Net对不同层级的特征表示都有显著的改进,能够更好地捕捉不同特征之间的关联和重要性。 总之,ECA-Net提供了一种高效并且可扩展的通道注意力机制,可以有效提升深度卷积神经网络的性能。它在计算和存储开销上的优势使得它成为一个非常有价值的工具,可在各种计算资源受限的应用中广泛应用。 ### 回答3: "eca-net: efficient channel attention for deep convolutional neural networks" 是一种用于深度卷积神经网络的高效通道注意力模块。这一模块旨在提高网络对不同通道(特征)之间的关联性的理解能力,以提升网络性能。 该方法通过引入了一个新的注意力机制来实现高效的通道注意力。传统的通道注意力机制通常是基于全局池化操作来计算通道之间的关联性,这种方法需要较高的计算成本。而ECA-Net则通过引入一个参数化的卷积核来计算通道之间的关联性,可以显著减少计算量。 具体来说,ECA-Net使用了一维自适应卷积(adaptive convolution)来计算通道注意力。自适应卷积核根据通道特征的统计信息来调整自身的权重,从而自适应地计算每个通道的注意力权重。这样就可以根据每个通道的信息贡献度来调整其权重,提高网络的泛化能力和性能。 ECA-Net在各种图像分类任务中进行了实验证明了其有效性。实验结果显示,ECA-Net在相同计算预算下,相比其他通道注意力方法,可以获得更高的分类精度。同时,ECA-Net还具有较少的额外计算成本和模型大小,使得其在实际应用中更加高效。 总结而言,"eca-net: efficient channel attention for deep convolutional neural networks" 提出了一种高效通道注意力方法,通过引入自适应卷积核来计算通道注意力,从而提高了深度卷积神经网络的性能。这一方法在实验中取得了良好的效果,并且具有较少的计算成本和模型大小。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值