[算法100天 day10]动态规划Ⅳ 经典题目必须掌握

本博客主要涉及以下五个问题:

最大连续子序列和
数塔问题
01背包问题
最长上升子序列(LIS)
最长公共子序列(LCS)

一、最大连续子序列问题【剑指 Offer 42. 连续子数组的最大和】

可以分两种想法,但是前一种比较费代码,所以还是用第二种。要学会精髓,同类型题目要会解。

Option-1:
在这里插入图片描述
Option-2:
在这里插入图片描述代码:

#include <bits/stdc++.h>
#include <string>
#define Max 101
using namespace std;
int num[100005];
int dp[100005];
int n,ans = 0;//不能直接把ans命为0

int maxSubArray(int *num){
    dp[0] = num[0];
    ans = num[0];//注意初始化ans
    for(int i = 0; i < n; i ++){
        dp[i] = max(dp[i-1]+num[i], num[i]);
        if(dp[i] > ans) ans = dp[i];
    }
    return ans;
}

int main(){
    cin >> n;
    for(int i = 0; i < n;i ++){
        cin>>num[i];
    }

    cout<<maxSubArray(num);
    return 0;
}

/*
-2 1 -3 4 -1 2 1 -5 4
*/

数塔问题

该类题目已经做了很多了,详见我前序博客。该类题目就是建立一个规模一样大小的dp表,从左上角到右下角的走,每一次寻找都是要么左走,要么下走。

0/1背包问题【P1048 [NOIP2005 普及组] 采药】

该类题目与贪心法那的背包问题不同,该题不能求出每一个物品的单价,只能选or不选。
题目:P1048 [NOIP2005 普及组] 采药
特别注意 行列的区别。。因为它WA了一次

#include <bits/stdc++.h>
#include <string>
#define Max 101
using namespace std;
int dp[105][1005];
int num[105][2];//第一列表示花费的时间,第二列表示得到的价值

int backpak(int t,int m){
   for(int i = 1; i <= m;i ++){
       for(int j = 1; j <= t; j++){
           if(j >= num[i][0])
               dp[i][j] = max(dp[i-1][j], dp[i-1][j - num[i][0]] + num[i][1]);
           else{
               dp[i][j] = dp[i-1][j];
           }
       }
   }
   return dp[m][t];
}

int main(){
   int T,M;
   cin >> T >> M;
   for(int i = 1;i <= M;i ++){
       cin>> num[i][0] >> num[i][1];
   }

   cout<<backpak(T,M);
   return 0;
}

/*
-2 1 -3 4 -1 2 1 -5 4
*/

最长上升子序列(LIS)

这个题目用dp的方法来做还是n2的!
在这里插入图片描述
代码:

#include <bits/stdc++.h>
#include <string>
#define Max 101
using namespace std;
int dp[2505],num[2505];


int lengthOfLIS(int n){
    dp[0] = 1;
    int ans = 0;
    for(int i = 1; i < n; i ++){//就是遍历两遍,每一次从前面最长的且对应的数小于该数的dp加一即可
            int temp = 0;
        for(int j = 0; j < i;j ++){
            if(dp[j] > temp && num[j] < num[i]) temp = dp[j];
        }
        dp[i] = temp + 1;
    }
    for(int i = 0;i < n; i++){
        if(dp[i] > ans) ans = dp[i];
    }
    return ans;
}

int main(){
    int n;
    cin >> n;
    for(int i = 0; i < n ;i ++){
        cin>> num[i];
    }

    cout<<lengthOfLIS(n);
    return 0;
}

/*
10 9 2 5 3 7 101 18
1 3 6 7 9 4 10 5 6
*/

最长公共子序列(LCS)

这个题需要和南大的第一题类比来看!需要注意的是 在不相等的时候万万不可以直接取上边或者左边的最大值!因为可能出现重复的数字,直接用一个ans存储就可以了!

在这里插入图片描述

class Solution {
public:
    int dp[1005][1005],nums1[1005],nums2[1005];


int findLength(vector<int>& nums1, vector<int>& nums2) {
    int n = nums1.size();
    int m = nums2.size();int ans = 0;
    for(int i = 1; i <= n; i ++){
        for(int j = 1; j <= m;j ++){
            if(nums1[i-1] == nums2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
            else dp[i][j] = 0;
            ans = max(dp[i][j], ans);
        }
    }

    return ans;
}
};
#include <bits/stdc++.h>
#include <string>
#define Max 101
using namespace std;
int dp[1005][1005],nums1[1005],nums2[1005];


int findLength(int n,int m){
    int ans = 0;
    for(int i = 1; i <= n; i ++){
        for(int j = 1; j <= m;j ++){
            if(nums1[i-1] == nums2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
            else dp[i][j] = 0;
            ans = max(ans,dp[i][j]);
        }

    }

    return ans;
}

int main(){
    int n,m;
    cin >> n>>m;
    for(int i = 0; i < n ;i ++){
        cin>> nums1[i];
    }
    for(int j = 0; j < m; j ++){
        cin>> nums2[j];
    }
    cout<<findLength(n,m);
    return 0;
}

/*
5 5
1 2 3 2 1
3 2 1 4 7
5 5
0 1 1 1 1
1 0 1 0 1
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值