本博客主要涉及以下五个问题:
最大连续子序列和
数塔问题
01背包问题
最长上升子序列(LIS)
最长公共子序列(LCS)
一、最大连续子序列问题【剑指 Offer 42. 连续子数组的最大和】
可以分两种想法,但是前一种比较费代码,所以还是用第二种。要学会精髓,同类型题目要会解。
Option-1:
Option-2:
代码:
#include <bits/stdc++.h>
#include <string>
#define Max 101
using namespace std;
int num[100005];
int dp[100005];
int n,ans = 0;//不能直接把ans命为0
int maxSubArray(int *num){
dp[0] = num[0];
ans = num[0];//注意初始化ans
for(int i = 0; i < n; i ++){
dp[i] = max(dp[i-1]+num[i], num[i]);
if(dp[i] > ans) ans = dp[i];
}
return ans;
}
int main(){
cin >> n;
for(int i = 0; i < n;i ++){
cin>>num[i];
}
cout<<maxSubArray(num);
return 0;
}
/*
-2 1 -3 4 -1 2 1 -5 4
*/
数塔问题
该类题目已经做了很多了,详见我前序博客。该类题目就是建立一个规模一样大小的dp表,从左上角到右下角的走,每一次寻找都是要么左走,要么下走。
0/1背包问题【P1048 [NOIP2005 普及组] 采药】
该类题目与贪心法那的背包问题不同,该题不能求出每一个物品的单价,只能选or不选。
题目:P1048 [NOIP2005 普及组] 采药
特别注意 行列的区别。。因为它WA了一次
#include <bits/stdc++.h>
#include <string>
#define Max 101
using namespace std;
int dp[105][1005];
int num[105][2];//第一列表示花费的时间,第二列表示得到的价值
int backpak(int t,int m){
for(int i = 1; i <= m;i ++){
for(int j = 1; j <= t; j++){
if(j >= num[i][0])
dp[i][j] = max(dp[i-1][j], dp[i-1][j - num[i][0]] + num[i][1]);
else{
dp[i][j] = dp[i-1][j];
}
}
}
return dp[m][t];
}
int main(){
int T,M;
cin >> T >> M;
for(int i = 1;i <= M;i ++){
cin>> num[i][0] >> num[i][1];
}
cout<<backpak(T,M);
return 0;
}
/*
-2 1 -3 4 -1 2 1 -5 4
*/
最长上升子序列(LIS)
这个题目用dp的方法来做还是n2的!
代码:
#include <bits/stdc++.h>
#include <string>
#define Max 101
using namespace std;
int dp[2505],num[2505];
int lengthOfLIS(int n){
dp[0] = 1;
int ans = 0;
for(int i = 1; i < n; i ++){//就是遍历两遍,每一次从前面最长的且对应的数小于该数的dp加一即可
int temp = 0;
for(int j = 0; j < i;j ++){
if(dp[j] > temp && num[j] < num[i]) temp = dp[j];
}
dp[i] = temp + 1;
}
for(int i = 0;i < n; i++){
if(dp[i] > ans) ans = dp[i];
}
return ans;
}
int main(){
int n;
cin >> n;
for(int i = 0; i < n ;i ++){
cin>> num[i];
}
cout<<lengthOfLIS(n);
return 0;
}
/*
10 9 2 5 3 7 101 18
1 3 6 7 9 4 10 5 6
*/
最长公共子序列(LCS)
这个题需要和南大的第一题类比来看!需要注意的是 在不相等的时候万万不可以直接取上边或者左边的最大值!因为可能出现重复的数字,直接用一个ans存储就可以了!
class Solution {
public:
int dp[1005][1005],nums1[1005],nums2[1005];
int findLength(vector<int>& nums1, vector<int>& nums2) {
int n = nums1.size();
int m = nums2.size();int ans = 0;
for(int i = 1; i <= n; i ++){
for(int j = 1; j <= m;j ++){
if(nums1[i-1] == nums2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = 0;
ans = max(dp[i][j], ans);
}
}
return ans;
}
};
#include <bits/stdc++.h>
#include <string>
#define Max 101
using namespace std;
int dp[1005][1005],nums1[1005],nums2[1005];
int findLength(int n,int m){
int ans = 0;
for(int i = 1; i <= n; i ++){
for(int j = 1; j <= m;j ++){
if(nums1[i-1] == nums2[j-1]) dp[i][j] = dp[i-1][j-1] + 1;
else dp[i][j] = 0;
ans = max(ans,dp[i][j]);
}
}
return ans;
}
int main(){
int n,m;
cin >> n>>m;
for(int i = 0; i < n ;i ++){
cin>> nums1[i];
}
for(int j = 0; j < m; j ++){
cin>> nums2[j];
}
cout<<findLength(n,m);
return 0;
}
/*
5 5
1 2 3 2 1
3 2 1 4 7
5 5
0 1 1 1 1
1 0 1 0 1
*/