图像的形态学处理
- 图像腐蚀:对于确定的结构元素,通过腐蚀运算可以消除小于结构元素的点。同时,若一个目标区域中含有细小的连接部分,可以通过腐蚀处理对区域进行分割。(imerode)
- 腐蚀结果一定是原目标图像的一个子集,即原图像的收缩。
- 图像的膨胀:定义一个结构元素,从图像左上角开始,按顺序移动结构元素的位置,当结构元素位于某坐标上时,且此时结构元素与目标图像存在交集,则保留坐标上的像素点,否则删除此坐标上的像素点。(imdilate)
- 腐蚀和膨胀的性质:对偶性,单调性,递减性,交换率(仅适用于图像膨胀),结合律,集合运算,平移不变性
- A目标图像,S结构元素
- 膨胀:A+S;腐蚀:A-S;开运算:(A-S)+S; 闭运算:(A+S)-S
- 开运算:先腐蚀后膨胀(图像有损),只有附近有完整像素的才会保留,可用于消噪。(I2= imopen(I,SE))
- 闭运算:先膨胀后腐蚀(图片有损),对目标图像分开的区域进行连接及对图像中的细小缝隙进行填补。(I2= imclose(I,SE))
- 开运算和闭运算的性质:
- 对偶性,扩展性,单调性,平移性,等幂性。
- 其他运算:
- 击中/不击中运算:可用于目标识别。(I2 = bwhitmiss(I,S1,S2))(S1:击中的结构元素.S2:不击中的结构元素)
- 细节处理:在保留源图像几何形状的前提下,尽量减少图像所包含的信息量.获得图像的骨架.
- 算法描述:
- 计算当前像素领域内8个方向的可见像素数目,如果少于2个像素,则删除此像素会缩短图像骨架长度;若多于6个元素,则删除会改变图像骨架的几何形状.
- 计算当前像素周围领域内的区域数目,如果多于1 个,那么删除中心像素会将目标图像分解成不同部分.(I2= bwmorph(I,‘thin’,inf))(inf:无穷大)