背包入门(包括一维优化):01背包、完全背包、多重背包、分组背包

背包问题(题目均来自Acwing)

2. 01 背包问题

N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次。

i i i 件物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数, N N N V V V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N N N行,每行两个整数 v i v_i vi w i w_i wi用空格隔开,分别表示第 i i i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N , V ≤ 1000 0 < N,V\le1000 0<N,V1000

0 < v i , w i ≤ 1000 0 < v_i,w_i\le1000 0<vi,wi1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8

f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i件物品放到容量为 j j j的背包中的最大价值。

动态转移方程f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])

f [ i ] [ j ] f[i][j] f[i][j]只可能来自于两个状态,要么取第 i i i件物品,要么不取第 i i i件物品。

(1) 如果不装第 i i i件物品,那么问题就转化为“前 i − 1 i-1 i1件物品放入容量为 j j j的背包中的最大价值”

(2) 如果装第 i i i件物品,那么问题就转化为“前 i − 1 i-1 i1件物品放入剩下的容量为 j − v [ i ] j-v[i] jv[i]的背包中的最大价值”

#include<iostream>
using namespace std;
const int N = 1e3 + 10;
int f[N][N], w[N], v[N];
int main(){
    int n, m;
    cin>>n>>m;
    for(int i = 1; i <= n; i++){
        cin>>v[i]>>w[i];
    }
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            f[i][j] = f[i - 1][j];
            if(j - v[i] >= 0)
            f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
        }
    }
    cout<<f[n][m];
    return 0;
}

事实上,我们想要知道最后的状态,也就是 f [ n ] [ m ] f[n][m] f[n][m],只需要知道体积从 1 ∼ m 1\sim{m} 1m的状态。所以,第一维可以约简。

f[i][j] = max(f[i-1][j], f[i-1][j-v[i]] + w[i])不难发现,当前状态均来自于前 i − 1 i-1 i1个物品的状态。所以,如果状态更新如下:

for(int i = 1; i <= n; i++){
        for(int j = v[i]; j <= m; j++){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }

那么本轮更新的值,可能就会影响后续更新的值,也就是f[i][j] = max(f[i-1][j], f[i][j-v[i]] + w[i])。比如,这一轮更新了 f [ 3 ] f[3] f[3],这一轮更新 f [ 7 ] f[7] f[7]的时候又用到了 f [ 3 ] f[3] f[3]。如果按照:

for(int i = 1; i <= n; i++){
        for(int j = m; j >= v[i]; j--){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }

更新,就不会有上述问题。原因是当前更新时, f [ j ] f[j] f[j]用到的状态来自于 f [ j − v [ i ] ] f[j - v[i]] f[jv[i]],倒着遍历时 f [ j ] f[j] f[j]更新总是先于 f [ j − v [ i ] ] f[j - v[i]] f[jv[i]]

#include<iostream>
using namespace std;
const int N = 1e3 + 10;
int f[N], w[N], v[N];
int main(){
    int n, m;
    cin>>n>>m;
    for(int i = 1; i <= n; i++){
        cin>>v[i]>>w[i];
    }
    for(int i = 1; i <= n; i++){
        for(int j = m; j >= v[i]; j--){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout<<f[m];
    return 0;
}
3. 完全背包问题

N N N种物品和一个容量是 V V V的背包,每种物品都有无限件可用。

i i i种物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数, N N N V V V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N N N行,每行两个整数 v i v_i vi w i w_i wi用空格隔开,分别表示第 i i i种物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N , V ≤ 1000 0 < N,V\le1000 0<N,V1000

0 < v i , w i ≤ 1000 0 < v_i,w_i\le1000 0<vi,wi1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
10

f [ i ] [ j ] f[i][j] f[i][j]表示前 i i i件物品放到容量为 j j j的背包中的最大价值。

f[i][j] = max(f[i - 1][j - k * v[i]] + k * w[i]),状态转移过程和01背包是一致的,只不过每种物品是无限的。

#include<iostream>
using namespace std;
const int N = 1010;
int f[N][N];
int v[N], w[N];
int n , m;
int main(){
    cin>>n>>m;
    for(int i = 1; i <= n; i++)  cin>>v[i]>>w[i];
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            for(int k = 0; j - k * v[i] >= 0; k++)
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
        }
    }
    cout<<f[n][m];
}

如果将 f [ i ] [ j ] f[i][j] f[i][j]进行推导,可以得到:

f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j − k × v ] + k × w ) k = 0 , 1 , 2... f[i][j]=max(f[i - 1][j - k \times v] + k \times w)\quad k=0,1,2... f[i][j]=max(f[i1][jk×v]+k×w)k=0,1,2...

f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i ] [ j − v ] + w , f [ i ] [ j − 2 × v ] + 2 × w , f [ i ] [ j − 3 × v ] + 3 × w , . . . ) f[i][j]=max(f[i-1][j], f[i][j-v]+w, f[i][j-2\times v] + 2 \times w,f[i][j-3\times v] + 3 \times w, ...) f[i][j]=max(f[i1][j],f[i][jv]+w,f[i][j2×v]+2×w,f[i][j3×v]+3×w,...)

f [ i ] [ j − v ] = m a x ( f [ i ] [ j − v ] , f [ i ] [ j − 2 × v ] + w , f [ i ] [ j − 3 × v ] + 2 × w + . . . ) f[i][j-v]=max(\quad\quad\quad f[i][j-v], \quad\quad f[i][j-2\times v]+w,\quad\quad f[i][j-3\times v] + 2 \times w+...) f[i][jv]=max(f[i][jv],f[i][j2×v]+w,f[i][j3×v]+2×w+...)

用极限的思想来看, f [ i ] [ j ] f[i][j] f[i][j]就可以被转化为:

f[i][j] = max(f[i - 1][j], f[i][j - v[i] + w[i])

#include<iostream>
using namespace std;
const int N = 1010;
int f[N][N];
int v[N], w[N];
int n , m;
int main(){
    cin>>n>>m;
    for(int i = 1; i <= n; i++)  cin>>v[i]>>w[i];
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= m; j++){
            f[i][j] = f[i - 1][j];
            if(j >= v[i])
                f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
        }
    }
    cout<<f[n][m];
}

从更新公式f[i][j] = max(f[i-1][j], f[i][j - v[i]] + w[i])来看,完全背包和01背包一样都可以被优化为一维。由于当前更新可能来自于本轮的更新,所以只需要正序遍历即可。

#include<iostream>
using namespace std;
const int N = 1010;
int f[N];
int v[N], w[N];
int n , m;
int main(){
    cin>>n>>m;
    for(int i = 1; i <= n; i++)  cin>>v[i]>>w[i];
    for(int i = 1; i <= n; i++){
        for(int j = v[i]; j <= m; j++){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout<<f[m];
}

4. 多重背包问题

N N N种物品和一个容量是 V V V的背包。

i i i种物品最多有 s i s_i si件,每件体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数, N N N V V V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N N N行,每行三个整数 v i v_i vi w i w_i wi s i s_i si,用空格隔开,分别表示第 i i i种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0 < N , V ≤ 100 0 < N,V\le100 0<N,V100

0 < v i , w i , s i ≤ 100 0 < v_i,w_i,s_i\le 100 0<vi,wi,si100

输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10

解释一下为什么多重背包不能直接做 O ( n 2 ) O(n^2) O(n2)的优化:
f[i][j] = max(f[i - 1][j], f[i - 1][j - v] + w, f[i - 1][j - 2v] + 2w,...,f[i - 1][j - sv] + sw]) f[i][j - v] = max( f[i - 1][j - v], f[i - 1][j - 2v] + w),...,f[i - 1][j - sv] + (s-1)w, f[i - 1][j - (s+1)v] + sw)

因为这里每种物品的数量是有限的,所以不能转化。

#include<iostream>
using namespace std;
const int N = 110;
int f[N][N];
int n, m;
int v[N], w[N], s[N];
int main(){
    cin>>n>>m;
    for(int i = 1; i <= n; i++) cin>>v[i]>>w[i]>>s[i];
    for(int i = 1; i <= n ; i++){
        for(int j = 1; j <= m; j++){
            for(int k = 0; j - k * v[i] >= 0 && k <= s[i]; k++){
                f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);
            }
        }
    }
    cout<<f[n][m];
    return 0;
}

不难发现,朴素做法的时间复杂度是 O ( n 3 ) O(n^3) O(n3)(假设 N N N V V V S S S同一数量级),如果想要优化到 O ( n 2 l o g ( n ) ) O(n^2log(n)) O(n2log(n)),就不能将每种物品的数量一个个枚举。我们知道,十进制可以转换为二进制,例如 1 0 D = 101 0 B    ⟺    1 0 D = 0 × 2 0 + 1 × 2 1 + 0 × 2 2 + 1 × 2 3 10_D = 1010_B \iff 10_D = 0 \times2^0 + 1 \times 2^1 + 0 \times 2^2 + 1 \times2^3 10D=1010B10D=0×20+1×21+0×22+1×23 。我们只需要将 2 0 2^0 20 2 1 2^1 21 2 2 2^2 22 3 ( 10 − 2 2 − 2 1 − 2 0 ) 3(10-2^2-2^1-2^0) 3(10222120)对应的体积以及价值计算出来,再按照01背包的方式取 2 0 2^0 20 2 1 2^1 21 2 2 2^2 22 6 ( 10 − 1 × 2 2 − 0 × 2 1 − 0 × 2 0 ) 6(10-1\times2^2-0\times2^1-0\times2^0) 6(101×220×210×20)或者不取。

问:为什么最后一堆取3而不取 2 3 2^3 23呢?

答:分为1,2,4,3按照0,1背包的选法最多为10个,但是1,2,4,8有可能超过10个,实际上没有10个。

#include<iostream>
using namespace std;
const int N = 20000;
int v[N], w[N];
int f[N];
int main(){
    int n, m;
    cin>>n>>m;
    int vv, cnt = 0, ww, ss;
    for(int i = 1; i <= n; i++){
        int  k = 1;
        cin>>vv>>ww>>ss;
        while(k <= ss){
            cnt ++;
            v[cnt] = vv * k;
            w[cnt] = ww * k;
            ss -= k;
            k *= 2;
        }
        if(ss > 0){
            cnt ++;
            v[cnt] = vv * ss;
            w[cnt] = ww * ss;
        }
    }
    for(int i = 1; i <= cnt; i++){
        for(int j = m; j >= v[i]; j--){
            f[j] = max(f[j], f[j - v[i]] + w[i]);
        }
    }
    cout<<f[m];
}
9. 分组背包问题

N N N组物品和一个容量是 V V V的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是 v i j v_{ij} vij,价值是 w i j w_{ij} wij,其中 i i i是组号, j j j是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N N N V V V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N N N组数据:

  • 每组数据第一行有一个整数 S i S_i Si,表示第 i i i个物品组的物品数量;
  • 每组数据接下来有 S i S_i Si行,每行有两个整数 v i j v_{ij} vij w i j w_{ij} wij,用空格隔开,分别表示第 i i i个物品组的第 j j j个物品的体积和价值;
输出格式

输出一个整数,表示最大价值。

数据范围

0 < N , V ≤ 100 0 < N,V≤100 0<N,V100

0 < S i ≤ 100 0 < S_i≤100 0<Si100

0 < v i j , w i j ≤ 100 0 < vij,wij≤100 0<vij,wij100

输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:
8

每组只取一个,对于不同组来说,可以转换为01背包;组内循环,最终只会保留一次更新。

#include<iostream>
using namespace std;
const int N = 111;
int f[N], s[N], v[N][N], w[N][N];
int main(){
    int n, m;
    cin>>n>>m;
    for(int i = 1; i <= n; i++){
        cin>>s[i];
        for(int j = 1; j <= s[i]; j++){
            cin>>v[i][j]>>w[i][j];
        }
    }

    for(int i = 1; i <= n; i++){
        for(int j = m; j >= 1; j--){
            for(int k = 1; k <= s[i]; k++){
                if(j - v[i][k] >= 0)
                    f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
            }
        }
    }
    cout<<f[m];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值