同态加密:分圆多项式简介

这里介绍一下分圆多项式的定义以及重要的性质。

首先,我们考虑多项式 x n − 1 x^{n}-1 xn1。根据复变函数内容,这个多项式的复因式分解是显然的: e 2 π i k / n e^{2 \pi i k/n} e2πik/n 1 ≤ k ≤ n 1 \leq k \leq n 1kn。于是就有:
x n − 1 = ∏ k = 1 n [ x − e 2 π i k / n ] . x^{n}-1=\prod_{k=1}^{n}\left[x-e^{2 \pi i k/n}\right] . xn1=k=1n[xe2πik/n].

我们看一个简单的性质。在上面的因式分解里,有一项是 x − 1 x-1 x1, 当 n n n 为偶数时还有一项是 x + 1 x+1 x+1。其他的因子两两共轭:
[ x − e 2 π i k / n ] [ x − e − 2 π i k / n ] = x 2 − 2 x cos ⁡ 2 π k n + 1 [x-e^{2 \pi i k/n}][x-e^{-2 \pi i k/n}]=x^{2}-2 x \cos \frac{2 \pi k}{n}+1 [xe2πik/n][xe2πik/n]=x22xcosn2πk+1

分圆多项式和这个 e 2 π i k / n e^{2 \pi i k/n} e2πik/n是有很大关系的。

分圆多项式 Φ n \Phi_{n} Φn

我们记 ( a , b ) (a, b) (a,b) a a a b b b 的最大公因数,于是有
E n = { k : 1 ≤ k ≤ n , ( k , n ) = 1 } . E_{n}=\{k: 1 \leq k \leq n,(k, n)=1\} . En={k:1kn,(k,n)=1}.

这个 E n E_n En 就是所有和 n n n 互素的元素的集合。 E n E_n En 的元素个数是欧拉函数 ϕ ( n ) \phi(n) ϕ(n)(定义如此)。于是可以构建下面所述的 Φ n \Phi_{n} Φn

Φ n ( x ) = ∏ k ∈ E n [ x − e 2 π i k / n ] \Phi_{n}(x)=\prod_{k \in E_{n}}\left[x-e^{2 \pi i k/n}\right] Φn(x)=kEn[xe2πik/n]
(注意 Φ n \Phi_{n} Φn ϕ ( n ) \phi(n) ϕ(n)的差别,哪个是分圆多项式?哪个是欧拉函数? )

显然 Φ n \Phi_{n} Φn 是首一多项式,次数为 ϕ ( n ) \phi(n) ϕ(n)。不妨看一些例子:
n = 1 : E 1 = { 1 } , Φ 1 ( x ) = x − 1. n=1: \quad E_{1}=\{1\}, \Phi_{1}(x)=x-1 . n=1:E1={1},Φ1(x)=x1.
n = 2 : E 2 = { 1 } n=2: \quad E_{2}=\{1\} n=2:E2={1} , Φ 2 ( x ) = x + 1 \Phi_{2}(x)=x+1 Φ2(x)=x+1.
n = 4 : E 4 = { 1 , 3 } n=4: \quad E_{4}=\{1,3\} n=4:E4={1,3}, Φ 4 ( x ) = ( x − i ) ( x + i ) = x 2 + 1. \Phi_{4}(x)=(x-i)(x+i)=x^{2}+1 . Φ4(x)=(xi)(x+i)=x2+1.

一些相关的性质

  1. 如果 p p p是素数,那么
    Φ p ( x ) = x p − 1 x − 1 = 1 + x + ⋯ + x p − 1 . \Phi_{p}(x)=\frac{x^{p}-1}{x-1}=1+x+\cdots+x^{p-1} . Φp(x)=x1xp1=1+x++xp1.
    证明是显然的。因为 E p = { 1 , 2 , . . . , p − 1 } E_p = \{1,2,..., p-1\} Ep={1,2,...,p1},而 e 0 = 1 e^0 = 1 e0=1

  2. n = n 1 d n=n_{1} d n=n1d。那么
    Φ d ( x ) = ∏ { [ x − e 2 π i k / n ] : 1 ≤ k ≤ n , ( k , n ) = n 1 } . \Phi_{d}(x)=\prod\left\{[x-e^{2 \pi i k/n}]: 1 \leq k \leq n,(k, n)=n_{1}\right\} . Φd(x)={[xe2πik/n]:1kn,(k,n)=n1}.
    证明。根据定义, Φ d ( x ) = ∏ r ∈ E d [ x − e 2 π i r / d ] \Phi_{d}(x)=\prod_{r \in E_{d}}[x-e^{2 \pi i r/d}] Φd(x)=rEd[xe2πir/d]。那么现在 r / d = ( n 1 r ) / n r / d=\left(n_{1} r\right) / n r/d=(n1r)/n 并且 ( r , d ) = 1 (r, d)=1 (r,d)=1 当且仅当 ( n 1 r , n ) = n 1 \left(n_{1} r, n\right)=n_{1} (n1r,n)=n1。 而且 r ≤ d r \leq d rd 当且仅当 n 1 r ≤ n n_{1} r \leq n n1rn. 于是只需要把 k = n 1 r k=n_{1} r k=n1r代入就可以了。

  3. 对于任意的 n ≥ 1 n \geq 1 n1
    x n − 1 = ∏ d ∣ n Φ d ( x ) . x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) . xn1=dnΦd(x).
    证明。 对所有满足 1 ≤ k ≤ n 1 \leq k \leq n 1kn k k k,都有 ( k , n ) = n 1 (k, n)=n_{1} (k,n)=n1,其中 n 1 n_{1} n1 是某个最大公约数。 于是在 d d d 取遍 n n n 的公约数的时候 n 1 = n / d n_{1}=n / d n1=n/d。所以
    ∏ d ∣ n Φ d ( x ) = ∏ k = 1 n [ x − e ( k / n ) ] = x n − 1. \prod_{d \mid n} \Phi_{d}(x)=\prod_{k=1}^{n}[x-e(k / n)]=x^{n}-1 . dnΦd(x)=k=1n[xe(k/n)]=xn1.
    (本质上就相当于从遍历 d d d 变成遍历 n 1 n_1 n1 然后用3的结论)

  4. 对于 n ≥ 2 n \geq 2 n2,
    ∏ { Φ d ( x ) : d ∣ n , d > 1 } = 1 + x + ⋯ + x n − 1 . \prod\left\{\Phi_{d}(x): d \mid n, d>1\right\}=1+x+\cdots+x^{n-1} . {Φd(x):dn,d>1}=1+x++xn1.
    Proof. 相当于除以 Φ 1 \Phi_1 Φ1
    类似的讨论可以得到:
    ∏ { Φ d ( x ) : d ∣ n , d ∤ m } = x n − 1 x m − 1 . \prod\left\{\Phi_{d}(x): d \mid n, d \nmid m\right\}=\frac{x^{n}-1}{x^{m}-1} . {Φd(x):dn,dm}=xm1xn1.
    (刨掉 d ∣ m d \mid m dm的相关内容)

  5. 推论:
    如果 p p p是素数,那么
    Φ p k ( x ) = y p − 1 y − 1 = 1 + y + ⋯ + y p − 1 , \Phi_{p^{k}}(x)=\frac{y^{p}-1}{y-1}=1+y+\cdots+y^{p-1}, Φpk(x)=y1yp1=1+y++yp1,
    其中 y = x p k − 1 y=x^{p^{k-1}} y=xpk1。特殊地, Φ 2 k ( x ) = x 2 k − 1 + 1 \Phi_{2^{k}}(x)=x^{2^{k-1}}+1 Φ2k(x)=x2k1+1.
    在4里边取 m = p k − 1 m=p^{k-1} m=pk1 n = p k n=p^{k} n=pk。因为是素数的幂,所以同时满足 d ∣ n d \mid n dn d ∤ m d \nmid m dm 的只有 n = p k n=p^k n=pk

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PenguinLeee

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值