codeforces1145D Divide and Sum

题目链接

题目:

给定一个长度为长度为 2 n 2n 2n 的数组 a a a ,现在将数组 a a a分裂成两个长度为 n n n 的数组 p p p 和数组 q q q,将数组 p p p 按从小到大排序得到 x x x,将数组 q q q 按从大到小排序,得到数组 y y y,定义 f ( p , q ) = ∑ i = 1 n ∣ x i − y i ∣ f(p,q)=\sum_{i=1}^n |x_i-y_i| f(p,q)=i=1nxiyi,问所有对 a a a的合法划分的 f ( p , q ) f(p,q) f(p,q)的和是多少。
( 1 ≤ n ≤ 150000 , 1 ≤ a i ≤ 1 0 9 ) (1 \le n \le 150000,1 \le a_i \le 10^9) (1n150000,1ai109)

题解:

由于划分之后需要排序,所以在划分前进行排序不影响结果,我们令 b = b= b=从小到大排序后的 a a a
结论:对于所有的合法划分, f ( p , q ) f(p,q) f(p,q) 的值都是相同的。
证明:令集合 L = { x ∣ x ∈ b 1... n } L=\{ x|x \in b_{1...n}\} L={xxb1...n} R = { x ∣ x ∈ b n + 1...2 n } R=\{x|x \in b_{n+1...2n} \} R={xxbn+1...2n}。现在我们来证明对于任意的 ∣ x i − y i ∣ |x_i-y_i| xiyi都对应于一个 R R R中的元素减去一个 L L L中的元素。利用反证法,如果不满足,不妨设 ∃ x i , y i ∈ L , x i < y i \exist x_i,y_i \in L,x_i <y_i xi,yiL,xi<yi,那么 y i > x 1... i y_i>x_{1...i} yi>x1...i y i > y i + 1... n y_i>y_{i+1...n} yi>yi+1...n,那么 y i y_i yi至少比 n n n个数大,则 y i y_i yi不可能在 L L L中,矛盾,其他情况也可以类似证明,所以对于任意的 ∣ x i − y i ∣ |x_i-y_i| xiyi都对应于一个 R R R中的元素减去一个 L L L中的元素,所以上述结论成立。
所有的合法划分的个数为 C 2 n n C_{2n}^n C2nn,所以最后的答案为
C 2 n n × ∑ i = 1 n b i + n − b i C_{2n}^n \times \sum_{i=1}^n b_{i+n}-b_i C2nn×i=1nbi+nbi

复杂度: O ( n l o g n ) O(nlogn) O(nlogn)
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<string>
#include<bitset>
#include<sstream>
#include<ctime>
//#include<chrono>
//#include<random>
//#include<unordered_map>
using namespace std;


#define ll long long
#define ls o<<1
#define rs o<<1|1
#define pii pair<int,int>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define sz(x) (int)(x).size()
#define all(x) (x).begin(),(x).end()
const double pi=acos(-1.0);
const double eps=1e-6;
const int mod=998244353;
const int INF=0x3f3f3f3f;
const int maxn=3e5+5;
int n;
int a[maxn];
ll qpow(ll a,ll p=mod-2){
	ll res=1;
	while(p){
		if(p&1)res=res*a%mod;
		a=a*a%mod;
		p>>=1;
	}
	return res;
}
int main(void){
	scanf("%d",&n);
	for(int i=1;i<=2*n;i++){
		scanf("%d",&a[i]);
	}
	sort(a+1,a+2*n+1);
	ll sum=0;
	for(int i=1;i<=n;i++){
		sum-=a[i];
	}
	for(int i=n+1;i<=2*n;i++){
		sum+=a[i];
	}
	sum%=mod;
	ll num=1;
	for(int i=n+1;i<=2*n;i++){
		num=num*i%mod;
	}
	ll tmp=1;
	for(int i=1;i<=n;i++){
		tmp=tmp*i%mod;
	}
	tmp=qpow(tmp);
	num=num*tmp%mod;
	ll ans=sum*num%mod;
	printf("%lld\n",ans);
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋转不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋转不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋转不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步转换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋转不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋转不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值