codeforces 1445 D Divide and Sum (组合数)

这篇博客介绍了如何通过排序、快速幂和组合数计算来解决一类序列相加的问题。博主首先分析了问题的本质,指出无论序列如何划分,结果总是相同的。然后,博主利用预处理逆元计算组合数,实现了一个O(n log n)的解决方案,并给出了C++代码示例。最后,博主展示了如何在给定的数据范围内高效地计算答案。
摘要由CSDN通过智能技术生成

题面

在这里插入图片描述

在这里插入图片描述

题意

在这里插入图片描述

题解

  1. 我们举例可以发现,每种可能通过排序相减之后相加,所得到的结果都是一样的,就是序列排序后,n个大的-n个小的和
  2. 那么我们现在只需要算出有多少种可能就行了,对于2n个数,每次选取n个数到一个序列,剩下的自然就是另一个序列,那么就是从2n当中任意选n个,就是组合数
  3. 看题中数据范围,n是1e5 ,直接用通过预处理逆元求组合数 O(nlogn)

代码

#include<bits/stdc++.h>

using namespace std;
typedef long long ll;
const int N = 1e6 + 10;
const ll mod = 998244353;
ll n, ans;
ll arr[N];
ll fact[N], infact[N];

//快速幂
ll qmi(ll a, ll k, ll p) {
    ll res = 1;
    while (k) {
        if (k & 1) res = res * a % p;
        a = a * a % p;
        k >>= 1;
    }
    return res;
}

int main() {

    cin >> n;
    for (int i = 1; i <= 2 * n; i++) scanf("%lld", &arr[i]);
    sort(arr + 1, arr + 1 + 2 * n);
    for (int i = 1; i <= n; i++) ans -= arr[i];
    for (int i = n + 1; i <= 2 * n; i++) ans = (arr[i]+ans)%mod;
    //通过预处理逆元求组合数
    fact[0] =infact[0]=1;
    for(int i=1;i<=2*n;i++){
        fact[i]=fact[i-1]*i%mod;
        infact[i]=infact[i-1]*qmi(i,mod-2,mod)%mod;
    }
    cout<<fact[2*n]*infact[n]%mod*infact[n]%mod*ans%mod<<endl;
    return 0;

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值