傅里叶级数展开公式,方波的傅里叶展开

傅里叶级数用于表示周期性信号,包括三角函数和指数函数形式。三角函数形式涉及傅里叶系数的计算,而指数形式利用欧拉公式将三角函数转换为指数表达。方波函数的傅里叶级数展示了奇数谐波的组合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


  一个信号可用各种各样的完备正交信号集表示,常用的正交集合有三角函数、指数形式、雅可比多项式、切比雪夫多项式、小波变换基函数等。如果完备正交函数集是三角函数或者指数函数,那么周期信号所展开的无穷级数就分别称为“三角函数型傅里叶变换”和“指数型傅里叶变换”,统称为傅里叶级数。

傅里叶级数的三角函数形式

{ f ( t ) = a 0 2 + a 1 cos ⁡ ( ω 0 t ) + b 1 sin ⁡ ( ω 0 t ) + a 2 cos ⁡ ( 2 ω 0 t ) + b 2 sin ⁡ ( 2 ω 0 t ) + a 3 cos ⁡ ( 3 ω 0 t ) + b 3 sin ⁡ ( 3 ω 0 t ) + … = a 0 2 + ∑ n = 1 ∞ [ a n cos ⁡ ( n ω 0 t ) + b n sin ⁡ ( n ω 0 t ) ] \left\{ \begin{aligned} f(t) =\frac{a_0}{2}&+a_1 \cos (\omega_0 t)+b_1 \sin (\omega_0 t) +a_2 \cos (2 \omega_0 t)+b_2 \sin (2 \omega_0 t) +a_3 \cos (3 \omega_0 t)+b_3 \sin (3 \omega_0 t) +\ldots \\ =\frac{a_0}{2}&+\sum_{n=1}^{\infty}\left[a_n \cos (n \omega_0 t)+b_n \sin (n \omega_0 t)\right] \end{aligned} \right. f(t)=2a0=2a0+a1cos(ω0t)+b1sin(ω0t)+a2cos(2ω0t)+b2sin(2ω0t)+a3cos(3ω0t)+b3sin(3ω0t)++n=1[ancos(nω0t)+bnsin(nω0t)]
其中,傅里叶系数为:
{ a n = 2 T ∫ − T 2 T 2 f ( t ) cos ⁡ ( n ω 0 t ) d t b n = 2 T ∫ − T 2 T 2 f ( t ) sin ⁡ ( n ω 0 t ) d t \left\{ \begin{array}{l} {a_n} = \frac{2}{T}\int_{ -\frac{T}{2}}^{ \frac{T}{2}} f (t)\cos (n\omega_0 t)dt\\ {b_n} = \frac{2}{T}\int_{ -\frac{T}{2}}^{ \frac{T}{2}} f (t)\sin (n\omega_0 t)dt \end{array} \right. an=T22T2Tf(t)cos(nω0t)dtbn=T22T2Tf(t)sin(nω0t)dt

傅里叶级数的指数函数形式

  利用欧拉公式 cos ⁡ ( n ω t ) = 1 2 ( e − j n ω t + e j n ω t ) {\cos \left( {n\omega t} \right) = \frac{1}{2}\left( {{e^{ - jn\omega t}} + {e^{jn\omega t}}} \right)} cos(t)=21(ejnωt+ejnωt) sin ⁡ ( n ω t ) = 1 2 j ( e j n ω t − e − j n ω t ) {\sin \left( {n\omega t} \right) = \frac{1}{{2j}}\left( {{e^{jn\omega t}} - {e^{ - jn\omega t}}} \right)} sin(t)=2j1(ejnωtejnωt),对 f ( t ) f(t) f(t)中的三角函数进行替换,可以得到:
f ( t ) = ∑ n = − ∞ ∞ F n e j n ω 0 t f(t) = \sum\limits_{n = - \infty }^\infty {{F_n}{e^{jn\omega_0 t}}} f(t)=n=Fnejnω0t
其中,傅里叶复系数为:
F n = 1 T ∫ − T 2 T 2 f ( t ) e − j n ω 0 t    d t {F_n} = \frac{1}{T}\int_{ -\frac{T}{2}}^{ \frac{T}{2}} f (t){{e}^{ - {j}n{\omega_0 }t}}\;{\rm{d}}t Fn=T12T2Tf(t)ejnω0tdt

方波函数的傅里叶级数

  假设方波周期为 T T T,频率为 f f f,对应角频率为 ω = 2 π f = 2 π T \omega=2\pi f=\frac{2\pi}{T} ω=2πf=T2π,方波幅值为 ± A \pm A ±A,对应的傅里叶级数为:
{ f ( t ) = 4 A π [ sin ⁡ ( ω t ) + 1 3 sin ⁡ ( 3 ω t ) + 1 5 sin ⁡ ( 5 ω t ) + . . . ] = 4 A π ∑ n = 0 ∞ sin ⁡ ( ( 2 n + 1 ) ω t ) 2 n + 1 \left\{ \begin{aligned} f(t) &= \frac{{4A}}{\pi }\left[ {\sin (\omega t) + \frac{1}{3}\sin (3\omega t) + \frac{1}{5}\sin (5\omega t) + ...} \right]\\ &= \frac{{4A}}{\pi }\sum\limits_{n = 0}^\infty {\frac{{\sin ((2n + 1)\omega t)}}{{2n + 1}}} \end{aligned} \right. f(t)=π4A[sin(ωt)+31sin(3ωt)+51sin(5ωt)+...]=π4An=02n+1sin((2n+1)ωt)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值