一个信号可用各种各样的完备正交信号集表示,常用的正交集合有三角函数、指数形式、雅可比多项式、切比雪夫多项式、小波变换基函数等。如果完备正交函数集是三角函数或者指数函数,那么周期信号所展开的无穷级数就分别称为“三角函数型傅里叶变换”和“指数型傅里叶变换”,统称为傅里叶级数。
傅里叶级数的三角函数形式
{
f
(
t
)
=
a
0
2
+
a
1
cos
(
ω
0
t
)
+
b
1
sin
(
ω
0
t
)
+
a
2
cos
(
2
ω
0
t
)
+
b
2
sin
(
2
ω
0
t
)
+
a
3
cos
(
3
ω
0
t
)
+
b
3
sin
(
3
ω
0
t
)
+
…
=
a
0
2
+
∑
n
=
1
∞
[
a
n
cos
(
n
ω
0
t
)
+
b
n
sin
(
n
ω
0
t
)
]
\left\{ \begin{aligned} f(t) =\frac{a_0}{2}&+a_1 \cos (\omega_0 t)+b_1 \sin (\omega_0 t) +a_2 \cos (2 \omega_0 t)+b_2 \sin (2 \omega_0 t) +a_3 \cos (3 \omega_0 t)+b_3 \sin (3 \omega_0 t) +\ldots \\ =\frac{a_0}{2}&+\sum_{n=1}^{\infty}\left[a_n \cos (n \omega_0 t)+b_n \sin (n \omega_0 t)\right] \end{aligned} \right.
⎩
⎨
⎧f(t)=2a0=2a0+a1cos(ω0t)+b1sin(ω0t)+a2cos(2ω0t)+b2sin(2ω0t)+a3cos(3ω0t)+b3sin(3ω0t)+…+n=1∑∞[ancos(nω0t)+bnsin(nω0t)]
其中,傅里叶系数为:
{
a
n
=
2
T
∫
−
T
2
T
2
f
(
t
)
cos
(
n
ω
0
t
)
d
t
b
n
=
2
T
∫
−
T
2
T
2
f
(
t
)
sin
(
n
ω
0
t
)
d
t
\left\{ \begin{array}{l} {a_n} = \frac{2}{T}\int_{ -\frac{T}{2}}^{ \frac{T}{2}} f (t)\cos (n\omega_0 t)dt\\ {b_n} = \frac{2}{T}\int_{ -\frac{T}{2}}^{ \frac{T}{2}} f (t)\sin (n\omega_0 t)dt \end{array} \right.
⎩
⎨
⎧an=T2∫−2T2Tf(t)cos(nω0t)dtbn=T2∫−2T2Tf(t)sin(nω0t)dt
傅里叶级数的指数函数形式
利用欧拉公式
cos
(
n
ω
t
)
=
1
2
(
e
−
j
n
ω
t
+
e
j
n
ω
t
)
{\cos \left( {n\omega t} \right) = \frac{1}{2}\left( {{e^{ - jn\omega t}} + {e^{jn\omega t}}} \right)}
cos(nωt)=21(e−jnωt+ejnωt)和
sin
(
n
ω
t
)
=
1
2
j
(
e
j
n
ω
t
−
e
−
j
n
ω
t
)
{\sin \left( {n\omega t} \right) = \frac{1}{{2j}}\left( {{e^{jn\omega t}} - {e^{ - jn\omega t}}} \right)}
sin(nωt)=2j1(ejnωt−e−jnωt),对
f
(
t
)
f(t)
f(t)中的三角函数进行替换,可以得到:
f
(
t
)
=
∑
n
=
−
∞
∞
F
n
e
j
n
ω
0
t
f(t) = \sum\limits_{n = - \infty }^\infty {{F_n}{e^{jn\omega_0 t}}}
f(t)=n=−∞∑∞Fnejnω0t
其中,傅里叶复系数为:
F
n
=
1
T
∫
−
T
2
T
2
f
(
t
)
e
−
j
n
ω
0
t
d
t
{F_n} = \frac{1}{T}\int_{ -\frac{T}{2}}^{ \frac{T}{2}} f (t){{e}^{ - {j}n{\omega_0 }t}}\;{\rm{d}}t
Fn=T1∫−2T2Tf(t)e−jnω0tdt
方波函数的傅里叶级数
假设方波周期为
T
T
T,频率为
f
f
f,对应角频率为
ω
=
2
π
f
=
2
π
T
\omega=2\pi f=\frac{2\pi}{T}
ω=2πf=T2π,方波幅值为
±
A
\pm A
±A,对应的傅里叶级数为:
{
f
(
t
)
=
4
A
π
[
sin
(
ω
t
)
+
1
3
sin
(
3
ω
t
)
+
1
5
sin
(
5
ω
t
)
+
.
.
.
]
=
4
A
π
∑
n
=
0
∞
sin
(
(
2
n
+
1
)
ω
t
)
2
n
+
1
\left\{ \begin{aligned} f(t) &= \frac{{4A}}{\pi }\left[ {\sin (\omega t) + \frac{1}{3}\sin (3\omega t) + \frac{1}{5}\sin (5\omega t) + ...} \right]\\ &= \frac{{4A}}{\pi }\sum\limits_{n = 0}^\infty {\frac{{\sin ((2n + 1)\omega t)}}{{2n + 1}}} \end{aligned} \right.
⎩
⎨
⎧f(t)=π4A[sin(ωt)+31sin(3ωt)+51sin(5ωt)+...]=π4An=0∑∞2n+1sin((2n+1)ωt)