运动模态
控制系统的数学建模,可以采用微分方程或传递函数,两者具有相同的特征方程。在数学上,微分方程的解由特解和通解组成,具体求解过程可以参考:微分方程求解的三种解析方法。
如果
n
n
n阶微分方程,具有
n
n
n个互不相等的单重特征根
λ
1
,
λ
2
,
.
.
.
,
λ
n
\lambda_1,\lambda_2,...,\lambda_n
λ1,λ2,...,λn,则称
e
λ
1
t
,
e
λ
2
t
,
.
.
.
,
e
λ
n
t
{e^{{\lambda _1}t}},{e^{{\lambda _2}t}},...,{e^{{\lambda _n}t}}
eλ1t,eλ2t,...,eλnt为该系统的模态,也叫振型。每一种模态表示一种类型的运动形态,微分方程的齐次解为它们的线性组合,即
y
(
t
)
=
c
1
e
λ
1
t
+
c
2
e
λ
2
t
+
.
.
.
+
c
n
e
λ
n
t
y\left( t \right) = {c_1}{e^{{\lambda _1}t}} + {c_2}{e^{{\lambda _2}t}} + ... + {c_n}{e^{{\lambda _n}t}}
y(t)=c1eλ1t+c2eλ2t+...+cneλnt
对于其它类型的特征根类型,所对应的齐次解或模态表达式,如下所示:
极点与模态类型
相同权重下,对比不同模态所对应的冲击响应,结果如下。取传递函数为
1
s
+
1
\frac{1}{s+1}
s+11、
1
s
+
10
\frac{1}{s+10}
s+101和
1
s
+
100
\frac{1}{s+100}
s+1001,对应模态为
e
−
t
e^{-t}
e−t、
e
−
10
t
e^{-10t}
e−10t和
e
−
100
t
e^{-100t}
e−100t。所谓权重,指的是模态前的系数(这里均为1)。
clc;clear;close all;
sys1 = tf(1, [1 1]); sys2 = tf(1, [1 10]); sys3 = tf(1, [1 100]); t = 0:0.01:10;
[y1, t1] = impulse(sys1, t); [y2, t2] = impulse(sys2, t); [y3, t3] = impulse(sys3, t);
figure; hold on;
plot(t1, y1, 'b', 'LineWidth', 1.5); % 蓝色线表示1/(s+1)
plot(t2, y2, 'r', 'LineWidth', 1.5); % 红色线表示1/(s+10)
plot(t3, y3, 'g', 'LineWidth', 1.5); % 绿色线表示1/(s+100)
legend('1/(s+1)', '1/(s+10)', '1/(s+100)');
xlabel('Time (s)');ylabel('Impulse Response');grid on;
总结:同等权重情况下,负实部越远离零轴,模态衰减越快;负实部越靠近零轴,模态衰减越慢;
零点与模态权重
将两种模态(
e
−
t
e^{-t}
e−t和
e
−
10
t
e^{-10t}
e−10t)进行等比例混合,结果如下:
G
(
s
)
=
0.5
s
+
1
+
0.5
s
+
10
=
s
+
5.5
(
s
+
1
)
(
s
+
10
)
G\left( s \right) = \frac{{0.5}}{{s + 1}} + \frac{{0.5}}{{s + 10}} = \frac{{s + 5.5}}{{\left( {s + 1} \right)\left( {s + 10} \right)}}
G(s)=s+10.5+s+100.5=(s+1)(s+10)s+5.5
可以看到,混合的过程产生了一个特定的零点。也就是说,零点不引入新的模态,但却与各模态的相对权重有关。更一般地,假设零点为
−
z
-z
−z,分析权重
α
、
β
\alpha、\beta
α、β随
z
z
z的变化规律,如下所示:
G
(
s
)
=
s
+
z
(
s
+
1
)
(
s
+
10
)
=
α
s
+
1
+
β
s
+
10
=
1
9
z
−
1
9
s
+
1
+
10
9
−
1
9
z
s
+
10
{G\left( s \right) = \frac{{s + z}}{{\left( {s + 1} \right)\left( {s + 10} \right)}} = \frac{\alpha }{{s + 1}} + \frac{\beta }{{s + 10}} = \frac{{\frac{1}{9}z - \frac{1}{9}}}{{s + 1}} + \frac{{\frac{{10}}{9} - \frac{1}{9}z}}{{s + 10}}}
G(s)=(s+1)(s+10)s+z=s+1α+s+10β=s+191z−91+s+10910−91z
clc;clear;close all;
z = 0:0.5:11; alpha = (1/9) * z - (1/9); beta = (10/9) - (1/9) * z;
figure; hold on;
plot(z, alpha, '-', 'LineWidth', 2, 'DisplayName', '\alpha');
plot(z, beta, '-', 'LineWidth', 2, 'DisplayName', '\beta');
title('Comparison of \alpha and \beta vs. z'); legend('\alpha', '\beta'); grid on;
xlabel('零点位置'); ylabel('相对权重'); xticks([0,1,5.5,10]); yticks([0,0.5,1]);
总结:零点不引入模态,但却影响模态权重;当极点附近有零点时,对应模态权重明显下降,重叠时甚至会被对消;
输入与最终模态
最终响应模态不仅与系统固有传函有关,还与输入有关。假设系统传递函数为:
G
(
s
)
=
C
(
s
)
R
(
s
)
=
6
(
s
+
3
)
(
s
+
1
)
(
s
+
2
)
G\left( s \right) = \frac{{C\left( s \right)}}{{R\left( s \right)}} = \frac{{6\left( {s + 3} \right)}}{{\left( {s + 1} \right)\left( {s + 2} \right)}}
G(s)=R(s)C(s)=(s+1)(s+2)6(s+3)
系统包含
e
−
t
e^{-t}
e−t、
e
−
2
t
e^{-2t}
e−2t两个运动模态。当输入为
r
(
t
)
=
R
1
+
R
2
e
−
5
t
r\left( t \right) = {R_1} + {R_2}{e^{ - 5t}}
r(t)=R1+R2e−5t时,系统最终零状态响应为:
{
c
(
t
)
=
L
−
1
[
C
(
s
)
]
=
L
−
1
[
6
(
s
+
3
)
(
s
+
1
)
(
s
+
2
)
(
R
1
s
+
R
2
s
+
5
)
]
=
9
R
1
−
R
2
e
−
5
t
+
(
3
R
2
−
12
R
1
)
e
−
t
+
(
3
R
1
−
2
R
2
)
e
−
2
t
\left\{ \begin{aligned} c\left( t \right) &= {\mathcal{L}^{ - 1}}\left[ {C\left( s \right)} \right] = {\mathcal{L}^{ - 1}}\left[ {\frac{{6\left( {s + 3} \right)}}{{\left( {s + 1} \right)\left( {s + 2} \right)}}\left( {\frac{{{R_1}}}{s} + \frac{{{R_2}}}{{s + 5}}} \right)} \right] \\ &= 9{R_1} - {R_2}{e^{ - 5t}} + \left( {3{R_2} - 12{R_1}} \right){e^{ - t}} + \left( {3{R_1} - 2{R_2}} \right){e^{ - 2t}} \\ \end{aligned} \right.
⎩
⎨
⎧c(t)=L−1[C(s)]=L−1[(s+1)(s+2)6(s+3)(sR1+s+5R2)]=9R1−R2e−5t+(3R2−12R1)e−t+(3R1−2R2)e−2t
其中,前两项具有与输入函数 r ( t ) r(t) r(t)相同的模态;后两项则包含了由系统固有极点形成的模态。
总结
- 同等权重情况下,负实部越远离零轴,模态衰减越快;负实部越靠近零轴,模态衰减越慢;
- 零点不引入模态,但却影响模态权重;当极点附近有零点时,对应模态权重明显下降;
- 最终模态类型与系统极点和输入极点有关;模态权重与系统零点和输入零点有关(严格来说,极点与初始值也会影响权重);
- 当闭环极点同时满足,①靠近零轴,②附近无零点;它将能够在较长时域内决定整体曲线走势,也被称为主导极点;
参考文献
[1] 胡寿松. 自动控制原理 (第六版) [M]. 科学出版社, 2013.
[2] 余成波. 信号与系统 (第二版) [M]. 清华大学出版社, 2007.
[3] CSDN博客:微分方程求解的三种解析方法和Matlab实现:经典时域法(齐次解+特解,零状态+零输入),冲激响应卷积法、传递函数法。