torch.triu_indices

row(int) -二维矩阵中的行数。

col(int) -二维矩阵中的列数。

offset(int) -与主对角线的对角线偏移。默认值:如果未提供,则为 0。

在 2-by-N 张量中返回矩阵的上三角部分(对角线上和之上的元素)的索引,其中第一行包含所有索引的行坐标,第二行包含列坐标。索引先按行排序,然后按列排序。

主对角线是i∈[0,min{d1,d2}−1] 的索引集{(i,i)},其中d1,d2 是矩阵的维度。

(4,3,-1)沿主对角线向下偏移一位,相当于只要主对角线上方元素

(4,3,1)沿主对角线向上偏移一位,只要主对角线下方元素

### 实现滑动窗口操作 为了在 PyTorch 中实现滑动窗口操作,可以根据具体需求采用不同方法。当处理文本数据时,`sliding_window` 库提供了一个简单的方法来创建滑动窗口[^1]。 然而,在不依赖额外库的情况下,也可以利用 PyTorch 自身的功能构建滑动窗口机制。下面展示了一种基于张量操作的方式: ```python import torch def create_sliding_windows(tensor, window_size, step=1): """ 创建给定大小和步幅的滑动窗口 参数: tensor (Tensor): 输入张量. window_size (int): 窗口尺寸. step (int): 步长,默认为 1. 返回: Tensor: 形状为 (num_windows, window_size) 的新张量. """ num_elements = tensor.size(0) indices = torch.arange(num_elements).unfold(0, window_size, step) windows = tensor[indices.long()] return windows # 示例用法 input_tensor = torch.tensor([i for i in range(10)], dtype=torch.float32) windowed_data = create_sliding_windows(input_tensor, window_size=4, step=2) print("原始输入:", input_tensor) print("\n应用滑窗后的输出:\n", windowed_data) ``` 此函数接受一个一维张量作为输入,并返回一个新的二维张量,其中每一行代表原序列中的一个滑动窗口实例。通过调整 `window_size` 和 `step` 参数,可以控制窗口的具体行为。 对于更复杂的场景,比如涉及多维度的数据或者需要特殊边界条件的情况,则可能需要用到更加专业的工具或自定义逻辑。例如,在某些情况下可能会涉及到对角线索引计算,这可以通过类似如下方式完成: ```python past_key_values_length = ... # 历史键值对长度 sliding_window = ... diagonal_index = past_key_values_length - sliding_window + 1 mask = torch.triu(torch.ones((seq_len, seq_len)), diagonal=-sliding_window + 1)[^2] # 使用 mask 对 attention scores 施加限制... ``` 上述代码片段演示了如何根据指定的历史键值对长度以及当前时间戳的位置来确定可访问范围内的上下文信息[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值