向量的范数(有例子,简单好理解)

本文详细介绍了向量的六种常见范数计算方法,包括0范数、1范数、2范数、∞范数、−∞范数及p范数,并通过实例向量b=[1,-2,3]进行具体计算说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量 a = [ a 1 , a 2 , . . . , a m ] a=[a_1, a_2, ... , a_m] a=[a1,a2,...,am],常用的几种范数计算方式如下(用b = [1,-2,3]为例):
(1)0范数,即向量a中非零元素的个数,常表示为 ∣ ∣ a ∣ ∣ 0 ||a||_0 a0

(对b来说,就是 3 3 3

(2)1范数,即向量a中所有元素绝对值之和,用公式表示为 ∣ ∣ a ∣ ∣ 1 = ∑ i ∣ a i ∣ ||a||_1= \sum_{i}|a_i| a1=iai
(对b来说,就是 1 + 2 + 3 = 6 1+2+3=6 1+2+3=6

(3)2范数,又称欧几里得范数,用公式表示为 ∣ ∣ a ∣ ∣ 2 = ( ∑ i ∣ a i ∣ 2 ) 1 2 ||a||_2 = (\sum_{i}|a_i|^2)^\frac{1}{2} a2=(iai2)21
(对b来说,就是 ( 1 + 2 2 + 3 2 ) 1 2 = 14 (1+2^2+3^2)^\frac{1}{2}=\sqrt{14} (1+22+32)21=14

(4) ∞ \infty 范数,即向量a的元素绝对值中的最大值,用公式表示为 ∣ ∣ a ∣ ∣ ∞ = max ⁡ i ∣ a i ∣ ||a||_\infty=\max_{i}|a_i| a=imaxai
(对b来说,就是 1 , 2 , 3 中 的 最 大 值 3 1,2,3中的最大值3 1,2,33

(5) − ∞ -\infty 范数,即向量a的元素绝对值中的最小值,用公式表示为 ∣ ∣ a ∣ ∣ − ∞ = min ⁡ i ∣ a i ∣ ||a||-_\infty = \min_{i}|a_i| a=iminai
(对b来说,就是 1 , 2 , 3 中 的 最 小 值 1 1,2,3中的最小值1 1,2,31

(6) p p p 范数,用公式表示为 ∣ ∣ a ∣ ∣ p = ( ∑ i ∣ a i ∣ p ) 1 p ||a||_p=(\sum_{i}|a_i|^p)^\frac{1}{p} ap=(iaip)p1
(对b来说,如果 p = 1 p=1 p=1,那就跟1范数一样取 6 6 6;如果 p = 2 p=2 p=2,那就跟2范数一样取 14 \sqrt{14} 14 ;如果 p = 3 p=3 p=3,那就取 ( 1 + 2 3 + 3 3 ) 1 3 = 36 3 (1+2^3+3^3)^\frac{1}{3}=\sqrt[3]{36} (1+23+33)31=336 ,…)

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值