向量
a
=
[
a
1
,
a
2
,
.
.
.
,
a
m
]
a=[a_1, a_2, ... , a_m]
a=[a1,a2,...,am],常用的几种范数计算方式如下(用b = [1,-2,3]为例):
(1)0范数,即向量a中非零元素的个数,常表示为
∣
∣
a
∣
∣
0
||a||_0
∣∣a∣∣0
(对b来说,就是
3
3
3)
(2)1范数,即向量a中所有元素绝对值之和,用公式表示为
∣
∣
a
∣
∣
1
=
∑
i
∣
a
i
∣
||a||_1= \sum_{i}|a_i|
∣∣a∣∣1=i∑∣ai∣
(对b来说,就是
1
+
2
+
3
=
6
1+2+3=6
1+2+3=6)
(3)2范数,又称欧几里得范数,用公式表示为
∣
∣
a
∣
∣
2
=
(
∑
i
∣
a
i
∣
2
)
1
2
||a||_2 = (\sum_{i}|a_i|^2)^\frac{1}{2}
∣∣a∣∣2=(i∑∣ai∣2)21
(对b来说,就是
(
1
+
2
2
+
3
2
)
1
2
=
14
(1+2^2+3^2)^\frac{1}{2}=\sqrt{14}
(1+22+32)21=14)
(4)
∞
\infty
∞范数,即向量a的元素绝对值中的最大值,用公式表示为
∣
∣
a
∣
∣
∞
=
max
i
∣
a
i
∣
||a||_\infty=\max_{i}|a_i|
∣∣a∣∣∞=imax∣ai∣
(对b来说,就是
1
,
2
,
3
中
的
最
大
值
3
1,2,3中的最大值3
1,2,3中的最大值3)
(5)
−
∞
-\infty
−∞范数,即向量a的元素绝对值中的最小值,用公式表示为
∣
∣
a
∣
∣
−
∞
=
min
i
∣
a
i
∣
||a||-_\infty = \min_{i}|a_i|
∣∣a∣∣−∞=imin∣ai∣
(对b来说,就是
1
,
2
,
3
中
的
最
小
值
1
1,2,3中的最小值1
1,2,3中的最小值1)
(6)
p
p
p 范数,用公式表示为
∣
∣
a
∣
∣
p
=
(
∑
i
∣
a
i
∣
p
)
1
p
||a||_p=(\sum_{i}|a_i|^p)^\frac{1}{p}
∣∣a∣∣p=(i∑∣ai∣p)p1
(对b来说,如果
p
=
1
p=1
p=1,那就跟1范数一样取
6
6
6;如果
p
=
2
p=2
p=2,那就跟2范数一样取
14
\sqrt{14}
14;如果
p
=
3
p=3
p=3,那就取
(
1
+
2
3
+
3
3
)
1
3
=
36
3
(1+2^3+3^3)^\frac{1}{3}=\sqrt[3]{36}
(1+23+33)31=336,…)