(一)向量范数

1. 向量的范数

定义 如果向量(一组数) x ⃗ ∈ R n \vec{x}\in \mathbb{R}^n x Rn 的某个实函数 N ( x ⃗ ) = ∣ ∣ x ⃗ ∣ ∣ N(\vec{x})=||\vec{x}|| N(x )=∣∣x ∣∣,满足如下条件:

(1) ∣ ∣ x ⃗ ∣ ∣ ≥ 0 ||\vec{x}||\ge0 ∣∣x ∣∣0,当且仅当 x ⃗ = 0 ⃗ \vec{x}=\vec{0} x =0 时取等号(正定条件);

(2) ∀   α ∈ R , ∣ ∣ α x ⃗ ∣ ∣ = ∣ α ∣ ⋅ ∣ ∣ x ⃗ ∣ ∣ \forall\ \alpha\in\mathbb{R},||\alpha\vec{x}||=|\alpha|\cdot||\vec{x}||  αR∣∣αx ∣∣=α∣∣x ∣∣

(3) ∣ ∣ x ⃗ + y ⃗ ∣ ∣ ≤ ∣ ∣ x ⃗ ∣ ∣ + ∣ ∣ y ⃗ ∣ ∣ ||\vec{x}+\vec{y}||\le||\vec{x}||+||\vec{y}|| ∣∣x +y ∣∣∣∣x ∣∣+∣∣y ∣∣(三角不等式);

则称 N ( x ⃗ ) N(\vec{x}) N(x ) R n \mathbb{R}^n Rn 上的一个向量范数

根据向量范数的三角不等式有:
∣ ∣ x ⃗ − y ⃗ ∣ ∣ + ∣ ∣ y ⃗ ∣ ∣ ≥ ∣ ∣ x ⃗ ∣ ∣ ⟹ ∣ ∣ x ⃗ − y ⃗ ∣ ∣ ≥ ∣ ∣ x ⃗ ∣ ∣ − ∣ ∣ y ⃗ ∣ ∣ ∣ ∣ x ⃗ − y ⃗ ∣ ∣ + ∣ ∣ x ⃗ ∣ ∣ = ∣ ∣ y ⃗ − x ⃗ ∣ ∣ + ∣ ∣ x ⃗ ∣ ∣ ≥ ∣ ∣ y ⃗ ∣ ∣ ⟹ ∣ ∣ x ⃗ − y ⃗ ∣ ∣ ≥ ∣ ∣ y ⃗ ∣ ∣ − ∣ ∣ x ⃗ ∣ ∣ \begin{aligned} &||\vec{x}-\vec{y}||+||\vec{y}||\ge||\vec{x}||\Longrightarrow ||\vec{x}-\vec{y}||\ge||\vec{x}||-||\vec{y}|| \\\\ &||\vec{x}-\vec{y}||+||\vec{x}||=||\vec{y}-\vec{x}||+||\vec{x}||\ge||\vec{y}||\Longrightarrow ||\vec{x}-\vec{y}||\ge||\vec{y}||-||\vec{x}|| \end{aligned} ∣∣x y ∣∣+∣∣y ∣∣∣∣x ∣∣∣∣x y ∣∣∣∣x ∣∣∣∣y ∣∣∣∣x y ∣∣+∣∣x ∣∣=∣∣y x ∣∣+∣∣x ∣∣∣∣y ∣∣∣∣x y ∣∣∣∣y ∣∣∣∣x ∣∣
结合上述两式与三角不等式,便有:
∣   ∣ ∣ x ⃗ ∣ ∣ − ∣ ∣ y ⃗ ∣ ∣   ∣ ≤ ∣ ∣ x ⃗ − y ⃗ ∣ ∣ ≤ ∣ ∣ x ⃗ ∣ ∣ + ∣ ∣ y ⃗ ∣ ∣ |\ ||\vec{x}||-||\vec{y}||\ |\le||\vec{x}-\vec{y}||\le||\vec{x}||+||\vec{y}||  ∣∣x ∣∣∣∣y ∣∣ ∣∣x y ∣∣∣∣x ∣∣+∣∣y ∣∣

2. 常用的向量范数

  1. 向量的 ∞ \infty -范数最大范数):
    ∣ ∣ x ⃗ ∣ ∣ ∞ ≜ max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ||\vec{x}||_{\infty}\triangleq \max\limits_{1\le i\le n}|x_i| ∣∣x 1inmaxxi
    条件 (1):
    ∣ ∣ x ⃗ ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ≥ 0 ||\vec{x}||_{\infty}=\max\limits_{1\le i\le n}|x_i|\ge0 ∣∣x =1inmaxxi0
    上述不等式取等号时,当且仅当
    max ⁡ 1 ≤ i ≤ n ∣ x i ∣ = 0 ⟺ x ⃗ = 0 \max\limits_{1\le i\le n}|x_i|=0\Longleftrightarrow \vec{x}=0 1inmaxxi=0x =0
    条件 (2):
    ∣ ∣ α x ⃗ ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ n ∣ α x i ∣ = ∣ α ∣ max ⁡ 1 ≤ i ≤ n ∣ x i ∣ = ∣ α ∣ ⋅ ∣ ∣ x ⃗ ∣ ∣ ∞ ||\alpha\vec{x}||_{\infty}=\max\limits_{1\le i\le n}|\alpha x_i|=|\alpha|\max\limits_{1\le i\le n}|x_i|=|\alpha|\cdot||\vec{x}||_{\infty} ∣∣αx =1inmaxαxi=α1inmaxxi=α∣∣x
    条件 (3):
    ∣ ∣ x ⃗ + y ⃗ ∣ ∣ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i + y i ∣ : = ∣ x k + y k ∣ ≤ ∣ x k ∣ + ∣ y k ∣ ≤ max ⁡ 1 ≤ i ≤ n ∣ x i ∣ + max ⁡ 1 ≤ i ≤ n ∣ y i ∣ = ∣ ∣ x ⃗ ∣ ∣ ∞ + ∣ ∣ y ⃗ ∣ ∣ ∞ ||\vec{x}+\vec{y}||_{\infty}=\max\limits_{1\le i\le n}|x_i+y_i|:=|x_k+y_k|\le|x_k|+|y_k|\le\max\limits_{1\le i\le n}|x_i|+\max\limits_{1\le i\le n}|y_i|=||\vec{x}||_{\infty}+||\vec{y}||_{\infty} ∣∣x +y =1inmaxxi+yi:=xk+ykxk+yk1inmaxxi+1inmaxyi=∣∣x +∣∣y

  2. 向量的 1-范数
    ∣ ∣ x ⃗ ∣ ∣ 1 ≜ ∑ i = 1 n ∣ x i ∣ ||\vec{x}||_{1}\triangleq \sum_{i=1}^n|x_i| ∣∣x 1i=1nxi
    条件 (1):
    ∣ ∣ x ⃗ ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ ≥ 0 ||\vec{x}||_{1}=\sum_{i=1}^n|x_i|\ge0 ∣∣x 1=i=1nxi0
    上述不等式取等号时,当且仅当
    ∣ x i ∣ = 0   ( i = 1 , 2 , … , n ) ⟺ x ⃗ = 0 |x_i|=0\ (i=1,2,\dots,n)\Longleftrightarrow \vec{x}=0 xi=0 (i=1,2,,n)x =0
    条件 (2):
    ∣ ∣ α x ⃗ ∣ ∣ 1 = ∑ i = 1 n ∣ α x i ∣ = ∣ α ∣ ∑ i = 1 n ∣ x i ∣ = ∣ α ∣ ⋅ ∣ ∣ x ⃗ ∣ ∣ 1 ||\alpha\vec{x}||_{1}=\sum_{i=1}^n|\alpha x_i|=|\alpha|\sum_{i=1}^n|x_i|=|\alpha|\cdot||\vec{x}||_{1} ∣∣αx 1=i=1nαxi=αi=1nxi=α∣∣x 1
    条件 (3):
    ∣ ∣ x ⃗ + y ⃗ ∣ ∣ 1 = ∑ i = 1 n ∣ x i + y i ∣ ≤ ∑ i = 1 n ( ∣ x i ∣ + ∣ y i ∣ ) = ∣ ∣ x ⃗ ∣ ∣ 1 + ∣ ∣ y ⃗ ∣ ∣ 1 ||\vec{x}+\vec{y}||_{1}=\sum_{i=1}^n|x_i+y_i|\le\sum_{i=1}^n(|x_i|+|y_i|)=||\vec{x}||_{1}+||\vec{y}||_{1} ∣∣x +y 1=i=1nxi+yii=1n(xi+yi)=∣∣x 1+∣∣y 1

  3. 向量的 2-范数欧氏范数):
    ∣ ∣ x ⃗ ∣ ∣ 2 ≜ ∣ x ⃗ ∣ = ∑ i = 1 n x i 2 ||\vec{x}||_{2}\triangleq |\vec{x}|=\sqrt{\sum_{i=1}^n x_i^2} ∣∣x 2x =i=1nxi2
    条件 (1):
    ∣ ∣ x ⃗ ∣ ∣ 2 = ∣ x ⃗ ∣ ≥ 0 ||\vec{x}||_{2}=|\vec{x}|\ge0 ∣∣x 2=x 0
    上述不等式取等号时,当且仅当
    x ⃗ = 0 \vec{x}=0 x =0
    条件 (2):
    ∣ ∣ α x ⃗ ∣ ∣ 2 = ∣ α x ⃗ ∣ = ∣ α ∣ ⋅ ∣ x ⃗ ∣ = ∣ α ∣ ⋅ ∣ ∣ x ⃗ ∣ ∣ 2 ||\alpha\vec{x}||_{2}=|\alpha \vec{x}|=|\alpha|\cdot|\vec{x}|=|\alpha|\cdot||\vec{x}||_{2} ∣∣αx 2=αx =αx =α∣∣x 2
    条件 (3):
    ∣ ∣ x ⃗ + y ⃗ ∣ ∣ 2 = ∣ x ⃗ + y ⃗ ∣ ≤ ∣ x ⃗ ∣ + ∣ y ⃗ ∣ = ∣ ∣ x ⃗ ∣ ∣ 2 + ∣ ∣ y ⃗ ∣ ∣ 2 ||\vec{x}+\vec{y}||_{2}=|\vec{x}+\vec{y}|\le|\vec{x}|+|\vec{y}|=||\vec{x}||_{2}+||\vec{y}||_{2} ∣∣x +y 2=x +y x +y =∣∣x 2+∣∣y 2

  4. 向量的 p-范数
    ∣ ∣ x ⃗ ∣ ∣ p ≜ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p , p ∈ [ 1 , ∞ ) ||\vec{x}||_{p}\triangleq\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}},p\in[1,\infty) ∣∣x p(i=1nxip)p1p[1,)
    条件 (1):
    ∣ ∣ x ⃗ ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ≥ 0 ||\vec{x}||_{p}=\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}\ge0 ∣∣x p=(i=1nxip)p10
    上述不等式取等号时,当且仅当
    ∣ x i ∣ = 0   ( i = 1 , 2 , … , n ) ⟺ x ⃗ = 0 |x_i|=0\ (i=1,2,\dots,n)\Longleftrightarrow \vec{x}=0 xi=0 (i=1,2,,n)x =0
    条件 (2):
    ∣ ∣ α x ⃗ ∣ ∣ p = ( ∑ i = 1 n ( ∣ α ∣ ⋅ ∣ x i ∣ ) p ) 1 p = ∣ α ∣ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p = ∣ α ∣ ⋅ ∣ ∣ x ⃗ ∣ ∣ p ||\alpha\vec{x}||_{p}=\left(\sum_{i=1}^n (|\alpha|\cdot|x_i|)^p\right)^{\frac{1}{p}}=|\alpha|\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}=|\alpha|\cdot||\vec{x}||_{p} ∣∣αx p=(i=1n(αxi)p)p1=α(i=1nxip)p1=α∣∣x p
    条件 (3):
    ∑ i = 1 n ∣ x i + y i ∣ p = ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ x i + y i ∣ ≤ ∑ i = 1 n ∣ x i + y i ∣ p − 1 ( ∣ x i ∣ + ∣ y i ∣ ) = ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ x i ∣ + ∑ i = 1 n ∣ x i + y i ∣ p − 1 ∣ y i ∣ ≤ [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ( p q = p q − q ; p , q > 1 ) = [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] [ ∑ i = 1 n ∣ x i + y i ∣ q ( p − 1 ) ] 1 q = [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 q \begin{aligned} & \quad\sum_{i=1}^n |x_i+y_i|^p \\\\ & =\sum_{i=1}^n |x_i+y_i|^{p-1}|x_i+y_i| \\\\ & \le\sum_{i=1}^n |x_i+y_i|^{p-1}(|x_i|+|y_i|) \\\\ & =\sum_{i=1}^n |x_i+y_i|^{p-1}|x_i|+\sum_{i=1}^n |x_i+y_i|^{p-1}|y_i| \\\\ & \le\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}}\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1})\right]^{\frac{1}{q}}\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}} (pq=pq-q;p,q>1) \\\\ & =\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right]\left[\sum_{i=1}^n |x_i+y_i|^{q(p-1)}\right]^{\frac{1}{q}} \\\\ & =\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right]\left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{q}} \end{aligned} i=1nxi+yip=i=1nxi+yip1xi+yii=1nxi+yip1(xi+yi)=i=1nxi+yip1xi+i=1nxi+yip1yi[i=1nxi+yiq(p1)]q1(i=1nxip)p1+[i=1nxi+yiq(p1)]q1(i=1nyip)p1(pq=pqq;p,q>1)= (i=1nxip)p1+(i=1nyip)p1 [i=1nxi+yiq(p1)]q1= (i=1nxip)p1+(i=1nyip)p1 [i=1nxi+yip]q1
    上述证明过程前后应用了绝对值不等式与Holder不等式,进一步:
    [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 − 1 q = [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 p ≤ [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] ( p > 1 ) \left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{1-\frac{1}{q}} =\left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{p}} \le\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right](p>1) [i=1nxi+yip]1q1=[i=1nxi+yip]p1 (i=1nxip)p1+(i=1nyip)p1 (p>1)
    p = 1 p=1 p=1 时由1-范数的三角不等式知上述不等式同样成立,综上得证Minkowski不等式(闵可夫斯基不等式)
    [ ∑ i = 1 n ∣ x i + y i ∣ p ] 1 p ≤ [ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p + ( ∑ i = 1 n ∣ y i ∣ p ) 1 p ] ( p ≥ 1 ) \left[\sum_{i=1}^n |x_i+y_i|^{p}\right]^{\frac{1}{p}} \le\left[\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}+\left(\sum_{i=1}^n |y_i|^p\right)^{\frac{1}{p}}\right](p\ge1) [i=1nxi+yip]p1 (i=1nxip)p1+(i=1nyip)p1 p1
    即,
    ∣ ∣ x ⃗ + y ⃗ ∣ ∣ p ≤ ∣ ∣ x ⃗ ∣ ∣ p + ∣ ∣ y ⃗ ∣ ∣ p ||\vec{x}+\vec{y}||_p\le||\vec{x}||_p+||\vec{y}||_p ∣∣x +y p∣∣x p+∣∣y p

3. 最大范数、1-范数、欧氏范数与p-范数的关系

四者之间的关系:最大范数、1-范数、欧氏范数是p-范数的特殊情况,1-范数、欧氏范数与p-范数的关系根据定义是一目了然的,现在说明 p = ∞ p=\infty p= 与最大范数之间的关系:
∣ ∣ x ⃗ ∣ ∣ ∞ = lim ⁡ p → ∞ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ||\vec{x}||_{\infty}=\lim_{p\rightarrow\infty}\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} ∣∣x =plim(i=1nxip)p1
采用夹逼定理求上述极限,由于
0 ≤ max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ≤ ∑ i = 1 n ∣ x i ∣ p ≤ n ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ) 0\le\max\limits_{1\le i\le n}|x_i|^p \le\sum_{i=1}^n |x_i|^p\le n\left(\max\limits_{1\le i\le n}|x_i|^p\right) 01inmaxxipi=1nxipn(1inmaxxip)

lim ⁡ p → ∞ ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ) 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ lim ⁡ p → ∞ [ n ( max ⁡ 1 ≤ i ≤ n ∣ x i ∣ p ) ] 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ lim ⁡ p → ∞ n 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \begin{aligned} &\lim_{p\rightarrow\infty}\left(\max\limits_{1\le i\le n}|x_i|^p\right)^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i|\\\\ &\lim_{p\rightarrow\infty}\left[n\left(\max\limits_{1\le i\le n}|x_i|^p\right)\right]^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i|\lim_{p\rightarrow\infty}n^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i| \end{aligned} plim(1inmaxxip)p1=1inmaxxiplim[n(1inmaxxip)]p1=1inmaxxiplimnp1=1inmaxxi

∣ ∣ x ⃗ ∣ ∣ ∞ = lim ⁡ p → ∞ ( ∑ i = 1 n ∣ x i ∣ p ) 1 p = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ ||\vec{x}||_{\infty}=\lim_{p\rightarrow\infty}\left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}=\max\limits_{1\le i\le n}|x_i| ∣∣x =plim(i=1nxip)p1=1inmaxxi

4. 向量范数的等价性

定义 R n \mathbb{R}^n Rn 中的向量序列 { x ⃗ ( k ) } \{\vec{x}^{(k)}\} {x (k)},向量 x ⃗ ∗ ∈ R n \vec{x}^*\in\mathbb{R}^n x Rn,若:
lim ⁡ k → ∞ x i ( k ) = x i ∗ ( i = 1 , 2 , … , n ) \lim_{k\rightarrow\infty}x^{(k)}_i=x^*_i\qquad(i=1,2,\dots,n) klimxi(k)=xi(i=1,2,,n)
则称 { x ⃗ ( k ) } \{\vec{x}^{(k)}\} {x (k)}收敛于 x ⃗ ∗ \vec{x}^* x ,记作:
lim ⁡ k → ∞ x ⃗ ( k ) = x ⃗ ∗ \lim_{k\rightarrow\infty}\vec{x}^{(k)}=\vec{x}^* klimx (k)=x

引理
lim ⁡ k → ∞ x ⃗ ( k ) = x ⃗ ∗ ⟺ lim ⁡ k → ∞ ∣ ∣ x ⃗ ( k ) − x ⃗ ∗ ∣ ∣ = 0 \lim_{k\rightarrow\infty}\vec{x}^{(k)}=\vec{x}^*\Longleftrightarrow\lim_{k\rightarrow\infty}||\vec{x}^{(k)}-\vec{x}^*||=0 klimx (k)=x klim∣∣x (k)x ∣∣=0

定理 向量范数是向量的连续实值函数

证明:选定线性空间的基 e ⃗ i   ( i = 1 , 2 , … , n ) \vec{e}_i\ (i=1,2,\dots,n) e i (i=1,2,,n),则:
0 ≤ ∣   ∣ ∣ x ⃗ ∣ ∣ − ∣ ∣ y ⃗ ∣ ∣   ∣ ≤ ∣ ∣ x ⃗ − y ⃗ ∣ ∣ = ∣ ∣ ∑ i = 1 n ( x i − y i ) e ⃗ i ∣ ∣ ≤ ∑ i = 1 n ∣ x i − y i ∣ ⋅ ∣ ∣ e ⃗ i ∣ ∣ ≤ ∣ ∣ x ⃗ − y ⃗ ∣ ∣ ∞ ∑ i = 1 n ∣ ∣ e ⃗ i ∣ ∣ 0\le|\ ||\vec{x}||-||\vec{y}||\ |\le||\vec{x}-\vec{y}||=||\sum\limits_{i=1}^n(x_i-y_i)\vec{e}_i||\le\sum\limits_{i=1}^n|x_i-y_i|\cdot||\vec{e}_i||\le||\vec{x}-\vec{y}||_{\infty}\sum\limits_{i=1}^n||\vec{e}_i|| 0 ∣∣x ∣∣∣∣y ∣∣ ∣∣x y ∣∣=∣∣i=1n(xiyi)e i∣∣i=1nxiyi∣∣e i∣∣∣∣x y i=1n∣∣e i∣∣

lim ⁡ x ⃗ → y ⃗ ( ∣ ∣ x ⃗ ∣ ∣ − ∣ ∣ y ⃗ ∣ ∣ ) = 0 ( 证毕 ) \lim_{\vec{x}\rightarrow\vec{y}}(||\vec{x}||-||\vec{y}||)=0\quad(证毕) x y lim(∣∣x ∣∣∣∣y ∣∣)=0(证毕)

定义 ∣ ∣ x ⃗ ∣ ∣ a ||\vec{x}||_a ∣∣x a ∣ ∣ x ⃗ ∣ ∣ b ||\vec{x}||_b ∣∣x b R n \mathbb{R}^n Rn 上的任意两种范数,若存在正常数 c 1 , c 2 c_1,c_2 c1,c2 使得
∀ x ⃗ ∈ R n ,   c 1 ∣ ∣ x ⃗ ∣ ∣ a ≤ ∣ ∣ x ⃗ ∣ ∣ b ≤ c 2 ∣ ∣ x ⃗ ∣ ∣ a \forall \vec{x}\in\mathbb{R}^n,\ c_1||\vec{x}||_a\le||\vec{x}||_b\le c_2||\vec{x}||_a x Rn, c1∣∣x a∣∣x bc2∣∣x a
则称 ∣ ∣ x ⃗ ∣ ∣ a ||\vec{x}||_a ∣∣x a ∣ ∣ x ⃗ ∣ ∣ b ||\vec{x}||_b ∣∣x b等价

引理 范数的等价具有传递性。

证明:若 ∣ ∣ x ⃗ ∣ ∣ a ||\vec{x}||_a ∣∣x a ∣ ∣ x ⃗ ∣ ∣ b ||\vec{x}||_b ∣∣x b等价且 ∣ ∣ x ⃗ ∣ ∣ b ||\vec{x}||_b ∣∣x b ∣ ∣ x ⃗ ∣ ∣ c ||\vec{x}||_c ∣∣x c等价,则
∀ x ⃗ ∈ R n , {   c 1 ∣ ∣ x ⃗ ∣ ∣ b ≤ ∣ ∣ x ⃗ ∣ ∣ a ≤ c 2 ∣ ∣ x ⃗ ∣ ∣ b   c 3 ∣ ∣ x ⃗ ∣ ∣ c ≤ ∣ ∣ x ⃗ ∣ ∣ b ≤ c 4 ∣ ∣ x ⃗ ∣ ∣ c , 其中  c 1 、 c 2 、 c 3 、 c 4 ∈ R \forall \vec{x}\in\mathbb{R}^n, \begin{cases} \ c_1||\vec{x}||_b\le||\vec{x}||_a\le c_2||\vec{x}||_b\\\\ \ c_3||\vec{x}||_c\le||\vec{x}||_b\le c_4||\vec{x}||_c \end{cases} ,其中\ c_1、c_2、c_3、c_4\in \mathbb{R} x Rn,  c1∣∣x b∣∣x ac2∣∣x b c3∣∣x c∣∣x bc4∣∣x c,其中 c1c2c3c4R
那么,
c 1 c 3 ∣ ∣ x ⃗ ∣ ∣ c ≤ ∣ ∣ x ⃗ ∣ ∣ a ≤ c 2 c 4 ∣ ∣ x ⃗ ∣ ∣ c c_1c_3||\vec{x}||_c\le||\vec{x}||_a\le c_2c_4||\vec{x}||_c c1c3∣∣x c∣∣x ac2c4∣∣x c
∣ ∣ x ⃗ ∣ ∣ a ||\vec{x}||_a ∣∣x a ∣ ∣ x ⃗ ∣ ∣ c ||\vec{x}||_c ∣∣x c等价。

定理 任意两个向量范数等价。

证明:

x ⃗ = 0 ⃗ \vec{x}=\vec{0} x =0 时,显然任意范数等价。

x ⃗ ≠ 0 ⃗ \vec{x}\ne\vec{0} x =0 时,考虑集合 S = { x ⃗ ∣   ∣ ∣ x ⃗ ∣ ∣ ∞ = 1 } S=\{\vec{x}|\ ||\vec{x}||_{\infty}=1\} S={x  ∣∣x =1}(超立方体表面,有界闭集),并且任意向量均可通过归一化映射为S的元素,即
∀ x ⃗ ∈ R n ,   x ⃗ ∣ ∣ x ⃗ ∣ ∣ ∞ ∈ S \forall\vec{x}\in\mathbb{R}^n,\ \frac{\vec{x}}{||\vec{x}||_{\infty}}\in S x Rn, ∣∣x x S
定义函数:
f ( x ⃗ ) = ∣ ∣ x ⃗ ∣ ∣ x ⃗ ∣ ∣ ∞ ∣ ∣ f(\vec{x})=\left|\left|\frac{\vec{x}}{||\vec{x}||_{\infty}}\right|\right| f(x )= ∣∣x x
由于 f ( x ) f(x) f(x)是S上的连续函数,故有界,同时根据范数的正定性有:
0 < c 1 < ∣ ∣ x ⃗ ∣ ∣ x ⃗ ∣ ∣ ∞ ∣ ∣ < c 2 0<c_1<\left|\left|\frac{\vec{x}}{||\vec{x}||_{\infty}}\right|\right|<c_2 0<c1< ∣∣x x <c2
那么
c 1 ∣ ∣ x ⃗ ∣ ∣ ∞ < ∣ ∣ x ⃗ ∣ ∣ < c 2 ∣ ∣ x ⃗ ∣ ∣ ∞ c_1||\vec{x}||_{\infty}<||\vec{x}||<c_2||\vec{x}||_{\infty} c1∣∣x <∣∣x ∣∣<c2∣∣x
这说明任何向量范数均与最大范数等价,进一步根据向量范数等价的传递性知任意两个向量范数等价。

5. 几个常用向量范数之间的等价关系

  • 欧式范数与1-范数
    ∣ ∣ x ⃗ ∣ ∣ 2 ≤ ∣ ∣ x ⃗ ∣ ∣ 1 ≤ N ∣ ∣ x ⃗ ∣ ∣ 2 , x ⃗ ∈ R N ||\vec{x}||_2\le||\vec{x}||_1\le\sqrt{N}||\vec{x}||_2,\vec{x}\in\mathbb{R}^N ∣∣x 2∣∣x 1N ∣∣x 2x RN
    证明:
    ∣ ∣ x ⃗ ∣ ∣ 2   2 = x 1 2 + x 2 2 + ⋯ + x N 2 ≤ ( ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x N ∣ ) 2 = ∣ ∣ x ⃗ ∣ ∣ 1   2 ||\vec{x}||_2^{\ 2}=x_1^2+x_2^2+\dots+x_N^2\le(|x_1|+|x_2|+\dots+|x_N|)^2=||\vec{x}||_1^{\ 2} ∣∣x 2 2=x12+x22++xN2(x1+x2++xN)2=∣∣x 1 2
    即,
    ∣ ∣ x ⃗ ∣ ∣ 2 ≤ ∣ ∣ x ⃗ ∣ ∣ 1 ||\vec{x}||_2\le||\vec{x}||_1 ∣∣x 2∣∣x 1

    ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x N ∣ = c 1 x 1 + c 2 x 2 + ⋯ + c N x N = c ⃗   T x ⃗ |x_1|+|x_2|+\dots+|x_N|=c_1x_1+c_2x_2+\dots+c_Nx_N=\vec{c}^{\ T}\vec{x} x1+x2++xN=c1x1+c2x2++cNxN=c  Tx
    其中
    c i = { − 1 ( x i < 0 ) 1 ( x i > 0 ) c_i= \begin{cases} -1&(x_i<0)\\\\ 1&(x_i>0) \end{cases} ci= 11(xi<0)(xi>0)
    由 Cauchy-Bunjakovski 不等式(Cauchy–Schwarz 不等式):
    ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x N ∣ = ∣ c ⃗   T x ⃗ ∣ ≤ ∣ c ⃗   T ∣ ⋅ ∣ x ⃗ ∣ = N ∣ ∣ x ⃗ ∣ ∣ 2 (证毕) |x_1|+|x_2|+\dots+|x_N|=|\vec{c}^{\ T}\vec{x}|\le|\vec{c}^{\ T}|\cdot|\vec{x}|=\sqrt{N}||\vec{x}||_2(证毕) x1+x2++xN=c  Tx c  Tx =N ∣∣x 2(证毕)
  • 最大范数与欧式范数
    ∣ ∣ x ⃗ ∣ ∣ ∞ ≤ ∣ ∣ x ⃗ ∣ ∣ 2 ≤ N ∣ ∣ x ⃗ ∣ ∣ ∞ , x ⃗ ∈ R N ||\vec{x}||_{\infty}\le||\vec{x}||_2\le\sqrt{N}||\vec{x}||_{\infty},\vec{x}\in\mathbb{R}^N ∣∣x ∣∣x 2N ∣∣x x RN
    证明:
    max ⁡ 1 ≤ i ≤ N ∣ x i ∣ = ( max ⁡ 1 ≤ i ≤ N ∣ x i ∣ ) 2 ≤ ∣ x 1 ∣ 2 + ∣ x 2 ∣ 2 + ⋯ + ∣ x N ∣ 2 ≤ N ( max ⁡ 1 ≤ i ≤ N ∣ x i ∣ ) 2 \max_{1\le i\le N}|x_i|=\sqrt{\left(\max_{1\le i\le N}|x_i|\right)^2}\le\sqrt{|x_1|^2+|x_2|^2+\dots+|x_N|^2}\le\sqrt{N\left(\max_{1\le i\le N}|x_i|\right)^2} 1iNmaxxi=(1iNmaxxi)2 x12+x22++xN2 N(1iNmaxxi)2
    (证毕)
  • 最大范数与1-范数
    ∣ ∣ x ⃗ ∣ ∣ ∞ ≤ ∣ ∣ x ⃗ ∣ ∣ 1 ≤ N ∣ ∣ x ⃗ ∣ ∣ ∞ , x ⃗ ∈ R N ||\vec{x}||_{\infty}\le||\vec{x}||_1\le N||\vec{x}||_{\infty},\vec{x}\in\mathbb{R}^N ∣∣x ∣∣x 1N∣∣x x RN
    通过欧式范数与1-范数、欧式范数与最大范数间的关系可知其正确性。
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值