【Simulink】基于FCS-MPC的LC型滤波三相逆变器控制(Matlab Function)

本文详细介绍了使用Simulink中的FCS-MPC方法对LC滤波的三相并网逆变器进行电流控制,包括电路分析、控制原理、离散化方程和仿真过程。作者通过MatlabFunction展示了从连续到离散的时间域转换,并展示了仿真结果中的负载电压特性。
摘要由CSDN通过智能技术生成

【Simulink】基于FCS-MPC的三相并网逆变器电流控制(Matlab Function)

之前写的关于三相逆变器的FCS-MPC的博客,均针对L型滤波的。LC型滤波与L型滤波有很多不同的地方,本篇博客将讲解LC型滤波三相逆变器的FCS-MPC控制。

1. 三相LC滤波逆变电路

在这里插入图片描述

根据基尔霍夫电压电流定理,在 α β \alpha \beta αβ坐标系下:

C d v o α β d t = i f α β − i o α β C \frac{dv_{o \alpha \beta}}{dt}=i_{f \alpha \beta}-i_{o\alpha \beta} Cdtdvoαβ=ifαβioαβ
L d i f α β d t = u α β − R i f α β − v o α β L \frac{di_{f\alpha \beta}}{dt}=u_{\alpha \beta} -R i_{f \alpha \beta} - v_{o \alpha \beta} Ldtdifαβ=uαβRifαβvoαβ

i f α β i_{f \alpha \beta} ifαβ u α β u_{\alpha \beta} uαβ 分别为 αβ 坐标系中的逆变器侧输出电流和逆变器输出电压; i o α β i_{o\alpha \beta} ioαβ 为 αβ 坐标系中的负载电流; v o α β v_{o \alpha \beta} voαβ 为负载电压。

2. FCS-MPC控制原理

由前向欧拉离散化方法可进一步推得 αβ 坐标系中 k 时刻和 k+1 时刻的离散方程:

C v o α β ( k + 1 ) − v o α β ( k ) T s = i f α β ( k ) − i o α β ( k ) C \frac{v_{o \alpha \beta}(k+1)-v_{o \alpha \beta}(k)}{T_s}=i_{f \alpha \beta}(k)-i_{o\alpha \beta}(k) CTsvoαβ(k+1)voαβ(k)=ifαβ(k)ioαβ(k)
L i f α β ( k + 1 ) − i f α β ( k ) T s = u α β ( k ) − R i f α β ( k ) − v o α β ( k ) L \frac{i_{f \alpha \beta}(k+1)-i_{f \alpha \beta}(k)}{T_s}=u_{\alpha \beta}(k) -R i_{f \alpha \beta}(k) - v_{o \alpha \beta}(k) LTsifαβ(k+1)ifαβ(k)=uαβ(k)Rifαβ(k)voαβ(k)

T s T_s Ts 为采样周期。

由此可以得到:

v o α β ( k + 1 ) = v o α β ( k ) + T s [ i f α β ( k ) − i o α β ( k ) ] C v_{o \alpha \beta}(k+1)=v_{o \alpha \beta}(k) +\frac{T_s [i_{f \alpha \beta}(k)-i_{o\alpha \beta}(k)]}{C} voαβ(k+1)=voαβ(k)+CTs[ifαβ(k)ioαβ(k)]
i f α β ( k + 1 ) = i f α β ( k ) + T s [ u α β ( k ) − R i f α β ( k ) − v o α β ( k ) ] L i_{f \alpha \beta}(k+1)=i_{f \alpha \beta}(k)+\frac{T_s [u_{\alpha \beta}(k) -R i_{f \alpha \beta}(k) - v_{o \alpha \beta}(k)]}{L} ifαβ(k+1)=ifαβ(k)+LTs[uαβ(k)Rifαβ(k)voαβ(k)]

负载电流 i o α β i_{o\alpha \beta} ioαβ 通常不通过采样得到(负载未知),而是通过计算得到:

i o α β ( k − 1 ) = i f α β ( k − 1 ) − ( C / T s ) ∗ ( v o α β ( k ) − v o α β ( k − 1 ) ) i_{o \alpha\beta}(k-1) = i_{f \alpha\beta}(k-1)-(C/Ts)*(v_{o \alpha \beta}(k)-v_{o \alpha \beta}(k-1)) ioαβ(k1)=ifαβ(k1)(C/Ts)(voαβ(k)voαβ(k1))

易知三相逆变一共有8个开关状态,对应8个电压矢量(电压矢量和开关状态的对应关系可以参考我之前的博客)。将8个电压矢量所对应的开关状态代入预测模型离散方程,从而预测得到 k+1 时刻的负载电压。最后,将预测得到的8个负载电压代入目标函数 G,通过比较寻优,选择使目标函数最小的电压为最优矢量。

G = ∣ v o α β − v r o α β ∣ G=|v_{o \alpha \beta}-v_{ro \alpha \beta}| G=voαβvroαβ

v r o α β v_{ro \alpha \beta} vroαβ 为负载电压参考值。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3. 仿真原理图

版本:2022b

整体

在这里插入图片描述

abc三相转为复数形式(方便后面运算)

在这里插入图片描述

cont2dis.m

function [Aq, Bq, Bdq] = cont2dis(Ts,Lfilter,Cfilter)
    % Input filter model
    A = [0 -1/Lfilter;1/Cfilter 0];
    B = [1/Lfilter; 0];
    Bd = [0; -1/Cfilter];
    % Discretization of the input filter model
    [Aq,Bq]=c2d(A,B,Ts);
    [~,Bdq]=c2d(A,Bd,Ts);    
    % c2d - Convert model from continuous to discrete time
end

x ( k + 1 ) = A x ( k ) + B v i ( k ) + B d i o ( k ) x(k+1)=Ax(k)+Bv_i(k)+B_di_o(k) x(k+1)=Ax(k)+Bvi(k)+Bdio(k)
x = [ i f , v o ] T x=[i_f, v_o]^T x=[if,vo]T

在这里插入图片描述

在这里插入图片描述

状态空间方程离散化方法

4. 仿真结果

负载电压

在这里插入图片描述

幅值接近220V

在这里插入图片描述

仿真下载

传送门

参考

  • github : MPC-3-Phase-Inverters-master
  • 郭磊磊,李伟韬,李琰琰,窦智峰,金楠.LC 滤波型逆变器并网电压鲁棒预测控制[J/OL].电力自动化设备. https://doi.org/10.16081/j.epae.202204025
  • Mohamed, Ihab S., et al. “Classical methods and model predictive control of three-phase inverter with output LC filter for UPS applications.” 2013 International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, 2013.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不雨_亦潇潇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值