昇思25天学习打卡营第1天|快速入门

23 篇文章 0 订阅
10 篇文章 0 订阅

☀️ 最近报名参加了昇思25天学习打卡训练营,希望能掌握MindSpore的一些基础应用。
☀️ 第一天从 初学入门 / 初学教程 / 02-快速入门 开始

1. 代码跑通流程

1.1 导入库

首先是导入库

import mindspore
from mindspore import nn
from mindspore.dataset import vision, transforms
from mindspore.dataset import MnistDataset

mindspore.dataset.vision:
This module is to support vision augmentations.

mindspore.dataset.transforms:
This module is to support common augmentations.

1.2 数据集

下载MNIST数据集。MNIST数据集是机器学习领域中经典的数据集,由6W个训练样本和1W个测试样本组成,每个样本是28 * 28像素的灰度手写数字图片,共10类(0-9)。

# Download data from open datasets
from download import download

url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)

下载很快,结果是根目录下出现 MNIST_Data :

在这里插入图片描述

在这里插入图片描述

给训练集和测试集命名:

train_dataset = MnistDataset('MNIST_Data/train')
test_dataset = MnistDataset('MNIST_Data/test')

打印数据集中包含的数据列名,用于dataset的预处理。

print(train_dataset.get_col_names())

结果:

['image', 'label']

MindSpore的dataset使用数据处理流水线(Data Processing Pipeline),需指定map、batch、shuffle等操作。这里我们使用map对图像数据及标签进行变换处理。

def datapipe(dataset, batch_size):
    image_transforms = [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
    label_transform = transforms.TypeCast(mindspore.int32)

    dataset = dataset.map(image_transforms, 'image')
    dataset = dataset.map(label_transform, 'label')
    dataset = dataset.batch(batch_size)
    return dataset

其中:

  • Rescale 用于调整图像像素值的大小,包括两个参数:rescale:缩放因子;shift:平移因子。
  • Normalize 用于对输入图像的归一化,包括三个参数:mean:图像每个通道的均值;std:图像每个通道的标准差;is_hwc:输入图像格式为(height, width, channel)还是(channel, height, width)。
  • HWC2CWH 用于转换图像格式。在不同的设备中可能会对(height, width, channel)或(channel, height, width)两种不同格式有针对性优化。MindSpore设置HWC为默认图像格式,在有CWH格式需求时,可使用该变换进行处理。
  • map 按顺序将数据增强作用在数据集对象上。传入参数中,image_transformers / label_transformers 是用户自定义的数据增强操作,’image’ / ‘label’ 指定数据增强操作作用在的数据列。
  • batch 将数据集中连续 batch_size 条数据组合为一个批数据,batch 操作要求每列中的数据具有相同的shape。

将处理好的数据集打包为大小为64的batch。

# Map vision transforms and batch dataset
train_dataset = datapipe(train_dataset, 64)
test_dataset = datapipe(test_dataset, 64)

可使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问,查看数据和标签的shape和datatype。

for image, label in test_dataset.create_tuple_iterator():
    print(f"Shape of image [N, C, H, W]: {image.shape} {image.dtype}")
    print(f"Shape of label: {label.shape} {label.dtype}")
    break

输出:

Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32
for data in test_dataset.create_dict_iterator():
    print(f"Shape of image [N, C, H, W]: {data['image'].shape} {data['image'].dtype}")
    print(f"Shape of label: {data['label'].shape} {data['label'].dtype}")
    break

输出:

Shape of image [N, C, H, W]: (64, 1, 28, 28) Float32
Shape of label: (64,) Int32

1.3 网络构建

mindspore.nn 类是构建所有网络的基类,也是网络的基本单元。当用户需要自定义网络时,可以继承 nn.Cell 类,并重写 __ init__ 方法和 construct 方法。__ init__ 包含所有网络层的定义,construct中包含数据(Tensor)的变换过程。

# Define model
class Network(nn.Cell):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.dense_relu_sequential = nn.SequentialCell(
            nn.Dense(28*28, 512),
            nn.ReLU(),
            nn.Dense(512, 512),
            nn.ReLU(),
            nn.Dense(512, 10)
        )

    def construct(self, x):
        x = self.flatten(x)
        logits = self.dense_relu_sequential(x)
        return logits

model = Network()
print(model)

其中:

  • nn.Flatten 将28x28的2D张量转换为784大小的连续数组。
  • nn.Dense 全连接层,其使用权重和偏差对输入进行线性变换。
  • nn.ReLU 给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。
  • nn.Softmax 将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。
  • nn.SequentialCell 一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。

输出:

Network<
  (flatten): Flatten<>
  (dense_relu_sequential): SequentialCell<
    (0): Dense<input_channels=784, output_channels=512, has_bias=True>
    (1): ReLU<>
    (2): Dense<input_channels=512, output_channels=512, has_bias=True>
    (3): ReLU<>
    (4): Dense<input_channels=512, output_channels=10, has_bias=True>
    >
  >

1.4 模型训练

在模型训练中,一个完整的训练过程(step)需要实现以下三步:

  • 正向计算: 模型预测结果(logits),并与正确标签(label)求预测损失(loss)。
  • 反向传播: 利用自动微分机制,自动求模型参数(parameters)对于loss的梯度(gradients)。
  • 参数优化: 将梯度更新到参数上。

MindSpore使用函数式自动微分机制,因此针对上述步骤需要实现:

  • 定义正向计算函数。
  • 使用value_and_grad通过函数变换获得梯度计算函数。
  • 定义训练函数,使用set_train设置为训练模式,执行正向计算、反向传播和参数优化。
# Instantiate loss function and optimizer
loss_fn = nn.CrossEntropyLoss()
optimizer = nn.SGD(model.trainable_params(), 1e-2)

# 1. Define forward function
def forward_fn(data, label):
    logits = model(data)
    loss = loss_fn(logits, label)
    return loss, logits

# 2. Get gradient function
grad_fn = mindspore.value_and_grad(forward_fn, None, optimizer.parameters, has_aux=True)

# 3. Define function of one-step training
def train_step(data, label):
    (loss, _), grads = grad_fn(data, label)
    optimizer(grads)
    return loss

def train(model, dataset):
    size = dataset.get_dataset_size()
    model.set_train()
    for batch, (data, label) in enumerate(dataset.create_tuple_iterator()):
        loss = train_step(data, label)

        if batch % 100 == 0:
            loss, current = loss.asnumpy(), batch
            print(f"loss: {loss:>7f}  [{current:>3d}/{size:>3d}]")

除训练外,定义测试函数,用来评估模型的性能。

def test(model, dataset, loss_fn):
    num_batches = dataset.get_dataset_size()
    model.set_train(False)
    total, test_loss, correct = 0, 0, 0
    for data, label in dataset.create_tuple_iterator():
        pred = model(data)
        total += len(data)
        test_loss += loss_fn(pred, label).asnumpy()
        correct += (pred.argmax(1) == label).asnumpy().sum()
    test_loss /= num_batches
    correct /= total
    print(f"Test: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

训练过程需多次迭代数据集,一次完整的迭代称为一轮(epoch)。在每一轮,遍历训练集进行训练,结束后使用测试集进行预测。打印每一轮的loss值和预测准确率(Accuracy),可以看到loss在不断下降,Accuracy在不断提高。

epochs = 3
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train(model, train_dataset)
    test(model, test_dataset, loss_fn)
print("Done!")

浅浅训练3轮看看,需要一点时间。输出:

Epoch 1
-------------------------------
loss: 2.289783  [  0/938]
loss: 1.672152  [100/938]
loss: 0.986539  [200/938]
loss: 0.613453  [300/938]
loss: 0.527057  [400/938]
loss: 0.635783  [500/938]
loss: 0.391398  [600/938]
loss: 0.242225  [700/938]
loss: 0.400611  [800/938]
loss: 0.333580  [900/938]
Test: 
 Accuracy: 90.8%, Avg loss: 0.316005 

Epoch 2
-------------------------------
loss: 0.226847  [  0/938]
loss: 0.376175  [200/938]
loss: 0.271924  [300/938]
loss: 0.219457  [400/938]
loss: 0.279481  [500/938]
loss: 0.199814  [600/938]
loss: 0.197322  [700/938]
loss: 0.344254  [800/938]
loss: 0.500780  [900/938]
Test: 
 Accuracy: 93.0%, Avg loss: 0.245471 

Epoch 3
-------------------------------
loss: 0.245931  [  0/938]
loss: 0.235604  [100/938]
loss: 0.217674  [200/938]
loss: 0.267972  [300/938]
loss: 0.256496  [400/938]
loss: 0.211823  [500/938]
loss: 0.264427  [600/938]
loss: 0.263830  [700/938]
loss: 0.260705  [800/938]
loss: 0.229631  [900/938]
Test: 
 Accuracy: 93.9%, Avg loss: 0.209714 

Done!

这个效果还可以继续优化。

1.5 保存模型

# Save checkpoint
mindspore.save_checkpoint(model, "model.ckpt")
print("Saved Model to model.ckpt")

在这里插入图片描述

1.6 加载模型

加载保存的权重分为两步:

  • 重新实例化模型对象,构造模型。
  • 加载模型参数,并将其加载至模型上。
# Instantiate a random initialized model
model = Network()
# Load checkpoint and load parameter to model
param_dict = mindspore.load_checkpoint("model.ckpt")
param_not_load, _ = mindspore.load_param_into_net(model, param_dict)
print(param_not_load)

输出:

[]

param_not_load是未被加载的参数列表,为空时代表所有参数均加载成功,表明我这里都加载成功了。

加载后的模型可以直接用于预测推理。

model.set_train(False)
for data, label in test_dataset:
    pred = model(data)
    predicted = pred.argmax(1)
    print(f'Predicted: "{predicted[:10]}", Actual: "{label[:10]}"')
    break

输出:

Predicted: "[6 7 0 0 6 6 4 1 8 0]", Actual: "[6 7 0 0 6 6 5 1 8 0]"

从上面结果可以看到,有个数字预测错误了,5→4,模型还可以继续改善,比如修改网络结构,调参等等。

2. 小结

今天学习了 MindSpore 的基础操作,包括利用 MINST 数据集和神经网络构建实现数字识别预测。

在这里插入图片描述

参考

昇思应用案例 | 小白都看得懂的数据变换(Transforms)详解

MindSpore网络构建

  • 17
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不雨_亦潇潇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值