《模型预测控制MPC》专栏里的博客 “【Simulink】基于FCS-MPC的三相并网逆变器电流控制(Matlab Function)” 介绍了三相并网逆变器的FCS-MPC控制,该控制策略在一个控制周期内仅应用一个电压矢量,故称为单矢量模型预测控制。针对单矢量控制的缺点, 【Simulink】基于双矢量MPC的三相并网逆变器电流控制(调制模型预测控制) 和 【Simulink】基于三矢量MPC的三相并网逆变器电流控制(调制模型预测控制) 两篇博客分别应用了双矢量和三矢量调制模型预测控制。
1. 控制对象:三相两电平L型滤波并网逆变器
参考: “【Simulink】基于FCS-MPC的三相并网逆变器电流控制(Matlab Function)”
2. 混合多矢量模型预测控制
首先对单矢量模型预测控制、双矢量调制模型预测控制和三矢量调制模型预测控制的性能作评估。
利用代价函数绘图分析不同控制方法下的预测误差,可以得出结论:双矢量优于单矢量,三矢量优于单矢量,但双矢量和三矢量在不同区域上各有优劣。以上分析过程详见博客末尾的参考(郭磊磊老师的论文)。
为此,混合多矢量模型预测控制应运而生,充分利用双矢量和三矢量的优势。双矢量一共12种电压矢量组合,三矢量一共6种电压矢量组合,加起来一共18种组合,遍历数量增多,可以采用扇区法减少计算量。从代价函数来看,混合多矢量优于双矢量和三矢量。
图中 us1(u1, u0)、us2(u2, u7)、us3(u3, u0)、us4(u4, u7)、us5(u5, u0)、us6(u6, u7)、us7(u1, u2)、us8(u2, u3)、us9(u3, u4)、us10(u4, u5)、us11(u5, u6)、us12(u6, u1) 是双矢量的矢量组合,ut1(u0, u1, u2)、ut2(u0, u2, u3)、ut3(u0, u3, u4)、ut4(u0, u4, u5)、ut5(u0, u5, u6)、ut6(u0, u6, u1) 是三矢量的矢量组合。
具体遍历方式、电压合成计算方式和开关信号生成方式与之前的双矢量和三矢量类似。
整体来看,混合多矢量就是双矢量和三矢量的组合,但要注意代价函数等计算的统一。
3. Simulink仿真搭建
仿真原理图
版本:matlab2022b
部分代码
(传统遍历方式,没有用扇区法简化)
function [y1,y2,y3]= fcn(udc, ea, eb, ia, ib, iar, ibr, L, R, Ts)
g =zeros(1,8);
G =zeros(1,18);
da =zeros(1,18);
db =zeros(1,18);
dc =zeros(1,18);
ua0 = 0; ub0= 0; % 000
ua1 = 2*udc/3; ub1 =0; % 100
ua2 = udc/3; ub2 = udc*sqrt(3)/3; % 110
ua3 = -udc/3; ub3 = udc*sqrt(3)/3; % 010
ua4 = -2*udc/3; ub4 = 0; % 011
ua5 = -udc/3; ub5 = udc*(-sqrt(3))/3; % 001
ua6 = udc/3; ub6 = udc*(-sqrt(3))/3; % 101
ua7 = 0; ub7 = 0; % 111
ua=[ua0,ua1,ua2,ua3,ua4,ua5,ua6,ua7];
ub=[ub0,ub1,ub2,ub3,ub4,ub5,ub6,ub7];
for i=1:8
ia1=(1-R*Ts/L)*ia+Ts*(ua(i)-ea)/L;
ib1=(1-R*Ts/L)*ib+Ts*(ub(i)-eb)/L;
g(i)= abs(iar-ia1)+abs(ibr-ib1);
end
% https://mbd.pub/o/bread/aJickphx
[~, S_opt]=min(G);
y1=da(S_opt);
y2=db(S_opt);
y3=dc(S_opt);
4. 仿真结果
稳定跟踪10A电流时,混合多矢量和三/双矢量对比
混合多矢量
电流波形:
FFT分析:
THD = 2.39%
三矢量
电流波形:
FFT分析:
THD = 2.91%
双矢量
电流波形:
FFT分析:
THD = 3.40%
从效果来看,混合多矢量 优于 三矢量和双矢量。
参考电流阶跃
从5A跳跃至10A,混合多矢量电流波形:
后续
大家可以参考论文,自行尝试扇区法。
采用扇区法后,原本的18次电压矢量组合评估计算就变成了4次。
参考
- IEEE优秀论文 | 基于一种新型可视化分析方法的电压源逆变器混合多矢量调制模型预测控制策略
- GUO L, CHEN M, LI Y, et al. Hybrid Multi-Vector Modulated Model Predictive Control Strategy for Voltage Source Inverters Based on a New Visualization Analysis Method[J]. IEEE Transactions on Transportation Electrification, 2023,9(1): 8-21.