Pytorch入门教程(十):ResNet图片分类实战

本文为Pytorch初学者提供了ResNet模型的基础教程,详细介绍了基本ResNet单元的构建,并展示了如何应用18层ResNet进行CIFAR图片分类。只需简单修改main()函数,即可将之前的LeNet5模型替换为ResNet18模型进行实战。
摘要由CSDN通过智能技术生成

1. 基本ResNet单元:

import torch
from torch import nn
from torch.nn import functional as F


class Resnet(nn.Module):

    def __init__(self, ch_in, ch_out):
        super(Resnet, self).__init__()
        self.conv1 = nn.Conv2d(ch_in, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn1 = nn.BatchNorm2d(ch_out)
        self.conv2 = nn.Conv2d(ch_out, ch_out, kernel_size=3, stride=1, padding=1)
        self.bn2 = nn.BatchNorm2d(ch_out)

        self.extra = nn.Sequential()
        # 如果输出、输出维度不同,需转化后才能相加
        if ch_out != ch_in:
            self.extra = nn.Sequential(
                nn.Conv2d(ch_in, ch_out, kernel_size=1, stride=1),
                nn.BatchNorm2d(ch_out)
            )

   
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值