图像分类:Pytorch图像分类之--ResNet模型

前言

 ResNet 网络是在 2015年 由微软实验室提出,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名。
原论文地址:Deep Residual Learning for Image Recognition(作者是CV大佬何凯明团队)

ResNet创新点介绍

在ResNet网络中创新点:

  • 提出 Residual 结构(残差结构),并搭建超深的网络结构(可突破1000层)
  • 使用 Batch Normalization 加速训练(丢弃dropout)

1、什么是残差网络?
残差网络让非线形层满足 F ( x ) F(x) F(x) ,然后从输入直接引入一个短连接到非线形层的输出上,使得整个映射变为 y = F ( x ) + x y= F(x) + x y=F(x)+x.
一个残差模块的定义如下图:
在这里插入图片描述
残差块分为两种:BasicBlock结构和Bottleneck结构;
在这里插入图片描述
2、残差块中 shortcut 的介绍
  有些残差块的 short cut 是实线的,而有些则是虚线的;这些虚线的 short cut 上通过1×1的卷积核对输入参数进行了维度处理,来保证主分支与 short cut 的输出维度相同;

  • BasicBlock残差结构的shotcut
    在这里插入图片描述
  • Bottleneck残差结构的shotcut
    在这里插入图片描述

3、传统神经网络相对于残差网络的问题:
 在根据损失函数计算的误差通过梯度反向传播的方式对深度网络权值进行更新时,得到的梯度值接近0或特别大,也就是梯度消失或爆炸

  • 梯度消失或梯度爆炸问题
    • 梯度消失:若每一层的误差梯度小于1,反向传播时,网络越深,梯度越趋近于0;
    • 梯度爆炸:若每一层的误差梯度大于1,反向传播时,网路越深,梯度越来越大;

解决方案:在网络中使用 BN(Batch Normalization)层来解决;

  • 深层中的网络退化问题

解决方案:引入残差网络。可以人为地让神经网络某些层跳过下一层神经元的连接,隔层相连,弱化每层之间的强联系

BasicBlock结构

1、BasicBlock结构适用于浅层网络;
在这里插入图片描述
上图BasicBlock残差结构所需的参数为:
3 × 3 × 64 × 64 + 3 × 3 × 64× 64 = 73728

Bottleneck结构

1、Bottleneck结构适用于深层网络;其中1×1的卷积核起到降维和升维的作用,同时可以大大减少网络参数。
在这里插入图片描述
上图Bottleneck残差结构所需的参数为:
1 × 1 × 256× 64 + 3 × 3 × 64× 64 + 1×1 ×64×256= 69632

Batch Normalization介绍
BN计算过程

在这里插入图片描述

BN作用
  • 抑制梯度消失和梯度爆炸
  • 加快收敛速度
  • 防止过拟合

ResNet介绍

 下图是原论文给出的不同深度的ResNet网络结构配置,注意表中的残差结构给出了主分支上卷积核的大小与卷积核个数,表中 残差块×N 表示将该残差结构重复N次。
在这里插入图片描述

程序的介绍

  以下程序中model.py为为ResNet模型;train.py为训练脚本;train_tool.py为一个类,训练时用到的函数,供train.py调用;为预测脚本,应用训练出的模型进行预测。

model.py
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchinfo import summary

class BasicBlock(nn.Module):
    expansion = 1  #残差网络中,主分支的卷积核个数是否发生变化,不变为1
    def __init__(self, in_channels, out_channels, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels,kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample


    def forward(self, x):
        identity = x
        if self.downsample is not None:    #虚线残差结构,需要下采样
            identity = self.downsample(x)
        x = self.bn1(self.conv1(x))
        x = self.relu(x)


        x = self.relu(self.conv2(x))

        x = x + identity
        x = self.relu(x)



        return x



class Bottleneck(nn.Module):
    expansion = 4   #残差结构中第三层卷积核个数是第一、二层卷积核个数的四倍
    def __init__(self, in_channels, out_channels,stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
                               stride=1, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)

        self.conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.conv3 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=1,
                               stride=1, bias=False)
        self.bn3 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU()
        self.downsample = downsample


    def forward(self, x):
        identity = x
        if self.downsample is not None:
            identity = self.downsample(x)
        x = self.bn1(self.conv1(x))
        x = self.relu(x)

        x = self.bn2(self.conv2(x))
        x = self.relu(x)

        x = self.bn2(self.conv3(x))
        x = x + identity
        x = self.relu(x)

        return x





class ResNet(nn.Module):
    def __init__(self, block, blocks_num, num_classes=5, include_top=True):
        super(ResNet, self).__init__()
        self.include_top = include_top
        self.in_channel = 64

        self.conv1 = nn.Conv2d(in_channels=3, out_channels=self.in_channel, kernel_size=7, stride=2,
                               padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(self.in_channel)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, blocks_num[0])
        self.layer2 = self._make_layer(block, 128, blocks_num[1], stride=2)
        self.layer3 = self._make_layer(block, 256, blocks_num[2], stride=2)
        self.layer4 = self._make_layer(block, 512, blocks_num[3], stride=2)

        if self.include_top:
            self.avgpool = nn.AdaptiveAvgPool2d((1, 1))   #output size = (1, 1)
            self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        if self.include_top:
            x = self.avgpool(x)
            x = torch.flatten(x, 1)
            x = self.fc(x)
        return  x


    # channel为残差结构中第一层卷积核个数
    def _make_layer(self, block, channel, block_num, stride=1):
        """
        :param block: BasicBlock或者Bottleneck
        :param channel:
        :param block_num:
        :param stride:
        :return:
        """
        downsample = None

        if stride != 1 or self.in_channel != channel * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=1,
                          stride=stride, bias=False),
                nn.BatchNorm2d(channel * block.expansion)
            )
        layers = []
        layers.append(block(self.in_channel, channel, downsample=downsample, stride=stride))
        self.in_channel = channel * block.expansion

        for _ in range(1, block_num):
            layers.append(block(self.in_channel, channel))
        return nn.Sequential(*layers)
#定义34层残差网络
def resnet34(num_classes=1000, include_top=True):
    return ResNet(BasicBlock, [3, 4, 6, 3], num_classes=num_classes, include_top=include_top)
#定义101层残差网络
def resnet101(num_classes=1000, include_top=True):
    return ResNet(Bottleneck, [3, 4, 23, 3], num_classes=num_classes, include_top=include_top)

train.py

把数据类别和对应索引写到.json文件中

#--------------------------------------------------------#
#  把类别数据写到.json文件中
#--------------------------------------------------------#

# 字典,类别:索引 {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
flower_list = train_dataset.class_to_idx
# 将 flower_list 中的 key 和 val 调换位置
cla_dict = dict((val, key) for key, val in flower_list.items())

# 将 cla_dict 写入 json 文件中
json_str = json.dumps(cla_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
     json_file.write(json_str)

train.py

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import json
import os
from model import ResNet, BasicBlock, Bottleneck, resnet34
import torch.optim as optim
from train_tool import TrainTool
import torchvision.models.resnet

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

#--------------------------------------------------------#
#  数据预处理
#--------------------------------------------------------#

transform = {
    "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                 transforms.RandomHorizontalFlip(),
                                 transforms.ToTensor(),
                                 transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])]),
    "test": transforms.Compose([transforms.Resize(256),
                               transforms.CenterCrop(224),
                               transforms.ToTensor(),
                               transforms.Normalize([0.485, 0.456, 0.406],[0.229, 0.224, 0.225])])
}

#--------------------------------------------------------#
#  获取数据的路径
#--------------------------------------------------------#

data_root = os.getcwd()
image_path = data_root + "/data/"
print(image_path)

# 导入训练集并进行处理
train_dataset = datasets.ImageFolder(root=image_path + "/train",
                                     transform=transform["train"])

#加载训练集
train_loader = torch.utils.data.DataLoader(train_dataset,  #导入的训练集
                                           batch_size=16,  #每批训练样本个数
                                           shuffle=True,   #打乱训练集
                                           num_workers=0)  #使用线程数

#导入测试集并进行处理
test_dataset = datasets.ImageFolder(root=image_path + "/test",
                                     transform=transform["test"])
test_num = len(test_dataset)
#加载测试集
test_loader = torch.utils.data.DataLoader(test_dataset,  #导入的测试集
                                           batch_size=16,  #每批测试样本个数
                                           shuffle=True,   #打乱测试集
                                           num_workers=0)  #使用线程数



#--------------------------------------------------------#
#  网络模型实例化
#--------------------------------------------------------#

resnet = resnet34()
# load pretrain weights
model_weight_path = "./pre_model/resnet34-b627a593.pth"    #记载预训练模型(比从头开始训练要快)
missing_keys, unexpected_keys = resnet.load_state_dict(torch.load(model_weight_path), strict=False)

inchannel = resnet.fc.in_features
resnet.fc = nn.Linear(inchannel, 5)   #预训练模型的输出类别为1000,改为5
resnet.to(device)


#--------------------------------------------------------#
#  设置损失函数和优化器
#--------------------------------------------------------#

loss_function = nn.CrossEntropyLoss()
optimizer = optim.Adam(resnet.parameters(), lr=0.0001)

#--------------------------------------------------------#
#  开始训练
#--------------------------------------------------------#
#正式训练
train_acc = []
train_loss = []
test_acc = []
test_loss = []

epoch = 0

#for epoch in range(epochs):
while True:
    epoch = epoch + 1;
    resnet.train()

    epoch_train_acc, epoch_train_loss = TrainTool.train(train_loader, resnet, optimizer, loss_function, device)

    resnet.eval()
    epoch_test_acc, epoch_test_loss = TrainTool.test(test_loader,resnet, loss_function,device)
    if epoch_train_acc < 0.93 and epoch_test_acc < 0.94:
       template = ('Epoch:{:2d}, train_acc:{:.1f}%, train_loss:{:.2f}, test_acc:{:.1f}%, test_loss:{:.2f}')
       print(template.format(epoch, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
       continue
    else:
       torch.save(resnet.state_dict(),'./model/resnet34_params.pth')
       print('Done')
       break
train_tool.py
import torch
import matplotlib.pyplot as plt

class TrainTool:
      def image_show(images):
          print(images.shape)
          images = images.numpy()   #将图片有tensor转换成array
          print(images.shape)
          images = images.transpose((1, 2, 0))   # 将【3,224,256】-->【224,256,3】
          # std = [0.5, 0.5, 0.5]
          # mean = [0.5, 0.5, 0.5]
          # images = images * std + mean
          print(images.shape)
          plt.imshow(images)
          plt.show()


      def train(train_loader, model, optimizer, loss_function, device):
          train_size = len(train_loader.dataset)  # 训练集的大小
          num_batches = len(train_loader)  # 批次数目

          train_acc, train_loss = 0, 0  # 初始化正确率和损失
          # 获取图片及标签
          for images, labels in train_loader:
              images, labels = images.to(device), labels.to(device)
              # 计算预测误差
              pred_labels = model(images)
              loss = loss_function(pred_labels, labels)
              # 反向传播
              optimizer.zero_grad()  # grad属性归零
              loss.backward()  # 反向传播
              optimizer.step()  # 每一步自动更新
              # 记录acc和loss
              train_acc += (pred_labels.argmax(1) == labels).type(torch.float).sum().item()
              train_loss += loss.item()


          train_acc /= train_size
          train_loss /= num_batches

          return train_acc, train_loss

      def test(test_loader, model, loss_function, device):
          test_size = len(test_loader.dataset)  # 测试集的大小,一共10000张图片
          num_batches = len(test_loader)  # 批次数目,313(10000/32=312.5,向上取整)
          test_loss, test_acc = 0, 0

          # 当不进行训练时,停止梯度更新,节省计算内存消耗
          with torch.no_grad():
              for images, labels in test_loader:
                  images, labels = images.to(device), labels.to(device)

                  # 计算loss
                  pred_labels = model(images)
                  loss = loss_function(pred_labels, labels)

                  test_acc += (pred_labels.argmax(1) == labels).type(torch.float).sum().item()
                  test_loss += loss.item()

          test_acc /= test_size
          test_loss /= num_batches

          return test_acc, test_loss

predict.py预测脚本参照:图像分类:Pytorch图像分类之–VGG模型文章中预测脚本

如有错误欢迎指正,如果帮到您请点赞加关注哦!

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: PyTorchResNet-18在CIFAR-10数据集的预训练模型是指在经过大规模的图像数据集上进行预训练后的ResNet-18模型,以便在CIFAR-10数据集上进行更好的图像分类任务。 ResNet-18是一个由18个卷积层和全连接层组成的深度神经网络。预训练模型是指在大规模数据上进行训练得到的模型参数,因此具有更好的泛化性能。CIFAR-10是一个包含10个类别的图像分类数据集,用于在小尺寸图像上进行模型训练和评估。 通过使用预训练的ResNet-18模型,在CIFAR-10数据集上进行图像分类任务时,我们可以利用预训练模型的权重参数来加快训练过程并提高准确率。预训练模型的好处是可以从大规模数据中学习到更多的特征表示,这些特征表示通常具有更高的鉴别性,因此可以更好地捕捉图像的关键特征。 对于CIFAR-10数据集,预训练模型可以有效地缩短训练时间并提高模型的收敛速度,因为在预训练模型中已经包含了对图像的一些共享特征的学习。通过在CIFAR-10数据集上进行微调,即在预训练模型的基础上进行进一步的训练,可以逐步调整模型参数以适应CIFAR-10数据集的特定要求,从而提高最终的图像分类性能。 总而言之,PyTorchResNet-18在CIFAR-10的预训练模型是通过在大规模数据上进行训练,在CIFAR-10数据集上进行图像分类任务时使用的预训练模型。这个预训练模型可以帮助提高训练速度和分类准确率,并且在模型训练和微调时起到了重要作用。 ### 回答2: PyTorchResNet-18是一种在CIFAR-10数据集上进行预训练的深度神经网络模型。CIFAR-10是一个包含10个类别的图像分类数据集,包括飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。 ResNet-18是指由18个卷积层和全连接层组成的深度残差网络。该网络的设计思想是通过残差连接(即跳过连接)来解决深度网络中的梯度消失问题,使得网络具有更好的训练效果。这意味着在每个卷积层之后,输入信号可以通过两条路径传递:一条直接连接到后续层,另一条通过卷积操作后再进行连接。这种设计可以使网络更加容易学习输入和输出之间的映射关系。 在CIFAR-10上预训练的ResNet-18模型具有多个优点。首先,这个模型具有较小的参数量和计算复杂度,适合在资源有限的环境下使用。其次,该模型经过在CIFAR-10数据集上的预训练,可以直接用于图像分类任务。通过在CIFAR-10上进行预训练,模型可以学习到一般的图像特征和模式,使其能够更好地泛化到其他类似的图像分类任务中。 通过使用预训练的ResNet-18模型,我们可以利用其已经学到的特征和知识,节省训练时间,并为我们的具体图像分类任务提供一个良好的起点。此外,该模型可以通过微调(fine-tuning)进一步优化,以适应特定任务的需求。 综上所述,PyTorchResNet-18在CIFAR-10的预训练模型是一个有价值的工具,可以用于图像分类任务,具有较小的参数量和计算复杂度,预先学习了一般的图像特征和模式,并可以通过微调进一步适应特定任务的需求。 ### 回答3: PyTorch的预训练模型ResNet-18在CIFAR-10数据集上表现出色。首先,CIFAR-10是一个包含10个不同类别的图像数据集,每个类别有6000个图像,共计60000个图像。ResNet-18是一个基于深度残差网络的模型,它具有18个卷积层和全连接层。该模型在ImageNet数据集上进行了预训练,其中包含了1000个类别的图像。 当我们将预训练的ResNet-18模型应用于CIFAR-10数据集时,可以得到很好的结果。因为CIFAR-10数据集的图像尺寸较小(32x32),相对于ImageNet数据集中的图像(224x224),所以ResNet-18模型在CIFAR-10上的训练速度更快。此外,ResNet-18模型通过残差连接解决了深度网络中的梯度消失问题,这使得它在CIFAR-10数据集上的表现也非常稳定。 通过使用预训练模型,我们可以通过迁移学习的方式节省训练时间。我们可以先将ResNet-18加载到内存中,然后只需针对CIFAR-10数据集的最后一层或几层进行微调即可。这样可以有效地提高模型在CIFAR-10上的性能。 总之,PyTorch中的预训练模型ResNet-18在CIFAR-10数据集上表现优秀。它通过残差连接解决了深度网络中的梯度消失问题,具有较快的训练速度和较好的稳定性。使用预训练模型可以节省训练时间,并通过微调模型的方式进一步提高性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xp_fangfei

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值