Matlab数学建模实战——(Lokta-Volterra掠食者-猎物方程)

文章通过三个步骤展示了如何使用Matlab解决不同的微分方程组问题,涉及变量替换、编程求解和结果分析。通过改变初值,观察到周期变化,例如问题1和问题2中周期分别为5和8。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.题目

请添加图片描述

问题1

该数学建模的第一问和第二问主要是用Matlab求解微分方程组,直接编程即可。

求解

Step1改写

  • y(1)=r
  • y(2)=f

Step2得y的导数

  • y(1).=2y(1)-ay(1)*y(2)
  • y(2).=-y(2)+a*y(1)*y(2)

Step3编程

clear;
a=0.01;
F=@(t,y)[2*y(1)-a*y(1)*y(2);
    -y(2)+a*y(1)*y(2)];
[t,y]=ode45(F,[0,10],[300,150]);
subplot(121);
plot(t,y(:,1));
xlabel('时间');
ylabel('r数量');
subplot(122);
plot(y(:,1),y(:,2));
xlabel('r数量');
ylabel('y数量');

Step4结果
在这里插入图片描述
从图中可以看出对应的周期tp大概是5

问题2

改变初值就行啦,直接进入step3

求解

Step3编程

clear;
a=0.01;
F=@(t,y)[2*y(1)-a*y(1)*y(2);
    -y(2)+a*y(1)*y(2)];
[t,y]=ode45(F,[0,10],[15,22]);
subplot(121);
plot(t,y(:,1));
xlabel('时间');
ylabel('r数量');
subplot(122);
plot(y(:,1),y(:,2));
xlabel('r数量');
ylabel('y数量');

Step4结果
在这里插入图片描述
从图中可以看出对应的周期tp大概是8

问题3

分析

首先列公式,给了u和v的定义,咱就对它求导,然后把它代入捕食者方程,再把r和f用u和v替换,根据题目所说忽略二阶项uv,这样可以算得
在这里插入图片描述

求解

Step1改写

  • y(1)=u
  • y(2)=v

Step2得y的导数

  • y(1).=-y(2)
  • y(2).=2y(1)

Step3编程

clear;
a=0.01;
F=@(t,y)[-y(2);
    2*y(1)];
[t,y]=ode45(F,[0,10],[0.1,0.1]);
subplot(121);
plot(t,y(:,1));
xlabel('时间');
ylabel('u');
subplot(122);
plot(y(:,1),y(:,2));
xlabel('u');
ylabel('v');

Step4结果
在这里插入图片描述
从图中可以看出u对应的周期tp大概是5

### 团队长期从事下列领域算法的研究和改进: ### 1 智能优化算法及应用 **1.1 改进智能优化算法方面(单目标和多目标)** **1.2 生产调度方面** 1.2.1 装配线调度研究 1.2.2 车间调度研究 1.2.3 生产线平衡研究 1.2.4 水库梯度调度研究 **1.3 路径规划方面** 1.3.1 旅行商问题研究(TSP、TSPTW) 1.3.2 各类车辆路径规划问题研究(vrp、VRPTW、CVRP) 1.3.3 机器人路径规划问题研究 1.3.4 无人机三维路径规划问题研究 1.3.5 多式联运问题研究 1.3.6 无人机结合车辆路径配送 **1.4 三维装箱求解** **1.5 物流选址研究** 1.5.1 背包问题 1.5.2 物流选址 1.5.4 货位优化 ##### 1.6 电力系统优化研究 1.6.1 微电网优化 1.6.2 配电网系统优化 1.6.3 配电网重构 1.6.4 有序充电 1.6.5 储能双层优化调度 1.6.6 储能优化配置 ### 2 神经网络回归预测、时序预测、分类清单 **2.1 bp预测和分类** **2.2 lssvm预测和分类** **2.3 svm预测和分类** **2.4 cnn预测和分类** ##### 2.5 ELM预测和分类 ##### 2.6 KELM预测和分类 **2.7 ELMAN预测和分类** ##### 2.8 LSTM预测和分类 **2.9 RBF预测和分类** ##### 2.10 DBN预测和分类 ##### 2.11 FNN预测 ##### 2.12 DELM预测和分类 ##### 2.13 BIlstm预测和分类 ##### 2.14 宽度学习预测和分类 ##### 2.15 模糊小波神经网络预测和分类 ##### 2.16 GRU预测和分类 ### 3 图像处理算法 **3.1 图像识别** 3.1.1 车牌、交通标志识别(新能源、国内外、复杂环境下车牌) 3.1.2 发票、身份证、银行卡识别 3.1.3 人脸类别和表情识别 3.1.4 打靶识别 3.1.5 字符识别(字母、数字、手写体、汉字、验证码) 3.1.6 病灶识别 3.1.7 花朵、药材、水果蔬菜识别 3.1.8 指纹、手势、虹膜识别 3.1.9 路面状态和裂缝识别 3.1.10 行为识别 3.1.11 万用表和表盘识别 3.1.12 人民币识别 3.1.13 答题卡识别 **3.2 图像分割** **3.3 图像检测** 3.3.1 显著性检测 3.3.2 缺陷检测 3.3.3 疲劳检测 3.3.4 病害检测 3.3.5 火灾检测 3.3.6 行人检测 3.3.7 水果分级 **3.4 图像隐藏** **3.5 图像去噪** **3.6 图像融合** **3.7 图像配准** **3.8 图像增强** **3.9 图像压缩** ##### 3.10 图像重建 ### 4 信号处理算法 **4.1 信号识别** **4.2 信号检测** **4.3 信号嵌入和提取** **4.4 信号去噪** ##### 4.5 故障诊断 ##### 4.6 脑电信号 ##### 4.7 心电信号 ##### 4.8 肌电信号 ### 5 元胞自动机仿真 **5.1 模拟交通流** **5.2 模拟人群疏散** **5.3 模拟病毒扩散** **5.4 模拟晶体生长** ### 6 无线传感器网络 ##### 6.1 无线传感器定位(Dv-Hop定位优化、RSSI定位优化) ##### 6.2 无线传感器覆盖优化 ##### 6.3 无线传感器通信及优化(Leach协议优化) ##### 6.4 无人机通信中继优化(组播优化)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值