周志华《机器学习》同步学习笔记 ——第七章 贝叶斯分类器

本文详细介绍了贝叶斯分类器的各种类型及其应用。包括贝叶斯决策论的基础概念,极大似然估计方法,朴素贝叶斯分类器的工作原理及拉普拉斯修正,半朴素贝叶斯分类器的改进思路,贝叶斯网的结构学习和推断过程,以及EM算法在参数估计中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近白天学车晚上看书 我瑞了 (概率论还没看啊啊啊啊)

7.1 贝叶斯决策论

对于分类任务,贝叶斯决策论考虑基于相关概率和误判损失来选择最优的类别标记。
期望损失(条件风险):
在这里插入图片描述
λ i j \lambda _{ij} λij是将cj的样本记为ci的损失。
目标是要最小化总体风险,那么只要对每个样本最小化条件风险 R ( c ∣ x ) R\left (c\mid \boldsymbol{x}\right ) R(cx)即可。
在这里插入图片描述
当目标为最小化分类错误率, λ i j \lambda _{ij} λij可为 :当相同时为0,不同为1
此时条件风险变为 R ( c ∣ x ) = 1 − P ( c ∣ x ) R\left (c\mid \boldsymbol{x}\right )=1-P\left (c\mid \boldsymbol{x}\right ) R(cx)=1P(cx) 即目标为最大化后验概率P。
为估计后验概率:

  1. 建模 P ( c ∣ x ) P\left (c\mid \boldsymbol{x}\right ) P(cx) -------判别式模型:决策树、BP、支持向量机等
  2. 对联合概率 P ( c , x ) P\left (c,\boldsymbol{x}\right ) P(c,x) 建模-------生成式模型:考虑在这里插入图片描述
    P(x)可以省略,因为我们比较的时候 P ( x ) P(\boldsymbol x) P(x)一定是相同的,所以我们就是用历史数据计算出 P ( c ) P(c) P(c)——用各类样本出现频率来估计和 P ( x ∣ c ) P(\boldsymbol x|c) P(xc)——下文方法。

7.2 极大似然估计

可以使条件概率估计变得简单,但严重依赖假设的概率分布是否符合潜在真实数据分布。(玄学可能失败)

估计类条件概率的基本策略:先假定其有某种确定的概率分布再用样本估计其分布的参数。根据频率主义,参数虽未知,但客观存在。极大似然估计是根据数据采样来进行估计:去寻找能最大化似然的参数值 θ ^ c \mathbf{\hat{\theta }_{c}} θ^c ——找到一个使数据出现的可能性的最大的值
直接似然和对数似然:
在这里插入图片描述
在这里插入图片描述
例子 : 看不懂啊啊啊啊啊
在这里插入图片描述

7.3 朴素贝叶斯分类器

条件概率需要所有属性的联合概率,比较难获得,所以朴素贝叶斯分类器采用“属性条件独立性假设”——每个属性独立得对分类结果产生影响

基于此,d为属性数目,xi为属性取值
在这里插入图片描述
同样无需考虑 P ( x ) P(x) P(x),将上式最大化 即为朴素贝叶斯分类器的表达式
需求 P ( c ) P(c) P(c) P ( x i ∣ c ) P\left ( x_{i}\mid c \right ) P(xic)

在这里插入图片描述

拉普拉斯修正

在这里插入图片描述

7.4 半朴素贝叶斯分类器

对属性条件独立性假设进行一定程度的放松,适当考虑一部分属性间的相互依赖信息。

常用独依赖估计:每个属性在类别之外最多依赖一个其他属性
在这里插入图片描述
若对 x i x_{i} xi,其父属性 p x i px_{i} pxi已知,则可估计 P ( x i ∣ c , p a i ) P(x_{i}\mid c,pa_{i}) P(xic,pai)
确定父属性的方法:

  1. 在这里插入图片描述超父:所有的属性依赖于同一个属性
  2. 在这里插入图片描述树形结构:在这里插入图片描述
  3. AODE:将有足够训练数据支撑的SPODE集成起来

7.5 贝叶斯网

有向图来刻画属性依赖关系,用属性概率表来描述属性联合概率分布
在这里插入图片描述

结构

联合概率:
在这里插入图片描述
依赖关系:
在这里插入图片描述
可以进行有向分离:找出v型结构,在两个父节点之间加上无向边。把有向边改成无向边。以此形成的道德图可以看出变量间的独立性

学习

统计训练样本,估计每个结点的条件概率。
需要用到评分函数来搜索结构最恰当的贝叶斯网。

推断

贝叶斯网训练好后,可以通过一些属性变量来推测其他属性变量的取值。
由于直接精确推断是NP问题,所以要近视推断。常用吉布斯采样。
在这里插入图片描述

7.6 EM算法

在存在未观测变量的情形下,对模型参数进行估计。

在这里插入图片描述
循环E和M:利用估计的参数值计算对数似然的期望值,寻找似然期望最大化的参数值 直至收敛到局部最优解。







呜呜呜呜呜呜之后再重新仔细看看这一章⑧呜呜呜

### 关于周志华机器学习》(西瓜书)第二章的学习笔记 #### 模型评估与选择概述 模型评估与选择是机器学习领域的重要组成部分,旨在通过合理的方法评价不同模型的表现并挑选最优者。这一过程不仅涉及如何衡量单个模型的好坏,还包括怎样对比多个候选方案以做出最佳决策。 #### 偏差、方差和噪声的概念解析 偏差度量了学习算法的期望预测与实际结果之间的差距,反映了算法自身的拟合精度;方差描述的是相同规模训练集变化引起的学习效果波动情况,体现了数据扰动带来的影响;而噪声则设定了给定任务下所有可能采用的学习方法能达到的最佳预期泛化误差界限,揭示了问题本身固有的复杂性和挑战性[^2]。 #### 性能度量指标——P-R图及其应用 为了更直观地展示各类分类器的工作特性,通常会绘制精确率-召回率(Precision-Recall, P-R)曲线来辅助分析。当面对多组实验结果,可以通过观察这些图形相互间的位置关系来进行优劣评判:如果某条曲线始终位于另一条之上,则表明前者具有更好的整体表现;而对于那些存在交点的情况,则需进一步计算各自下方区域面积大小作为判断依据之一。此外,“平衡点”作为一种特殊的性能测度,在特定条件下也能提供有价值的参考信息[^3]。 #### 偏差-方差分解理论简介 该理论为理解学习算法的一般化能力提供了框架性的指导思路,通过对平均测试错误率实施拆分操作,可以深入剖析导致过拟合现象背后的原因所在,并据此探索改进措施的方向。具体而言,总误差由三部分构成——不可约减误差点(即噪声)、平方形式表达出来的偏差项以及线性累加而成的方差成分[^4]。 ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve, auc def evaluate_model_performance(model, X, y): """ 计算并返回PR曲线下面积(AUC),用于量化模型的整体性能。 参数: model (object): 已经训练好的分类模型实例。 X (array-like of shape (n_samples, n_features)): 测试特征矩阵。 y (array-like of shape (n_samples,)): 对应的真实标签向量。 返回: float: PR AUC得分。 """ # 划分训练集/验证集 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 使用训练集拟合模型 model.fit(X_train, y_train) # 获取验证集中各观测对应的概率估计值 probas_pred = model.predict_proba(X_val)[:, 1] # 绘制PR曲线并求得AUC分数 precisions, recalls, _ = precision_recall_curve(y_val, probas_pred) pr_auc_score = auc(recalls, precisions) return pr_auc_score ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值