Leetcode 718. 最长重复子数组

本文介绍了如何使用动态规划方法解决一个经典问题,即找到两个列表中以相同元素结尾的最长子数组长度。当末尾元素不同时,子数组长度为0。通过构建状态转移方程和dp函数实现求解。
摘要由CSDN通过智能技术生成

在这里插入图片描述

心路历程:

这道题还是一个经典的DP问题,采用结尾包含答案的建模方式:
状态:分别以i, j为结尾的两个数组区间,两个末尾元素是否相同
动作:是否选择i-1 或者j-1的索引
返回值:最长子数组的长度

注意的点:

1、在包含答案的建模方式下,末尾元素不相同的话最长长度就是0

解法:动态规划

class Solution:
    def findLength(self, nums1: List[int], nums2: List[int]) -> int:
        @cache
        def dp(i, j): # 以nums1[i], nums2[j]结尾的最长子数组的长度
            if i == 0 or j == 0: return int(nums1[i] == nums2[j])       
            if nums1[i] == nums2[j]:
                return dp(i-1, j-1) + 1
            else:
                return 0
        res = 0
        for i1 in range(len(nums1)):
            for j1 in range(len(nums2)):
                res = max(res, dp(i1,j1))
        return res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值