Engineering Dynamics 3 --- 转动惯量

1 Introduction

梳理下重要的定律:
1)牛顿第二定律,为研究平移运动提供了工具。
∑ F e x t = d P / o d t = m a G / o (1.1) \sum F_{ext}=\frac{dP_{/o}}{dt}=ma_{G/o} \tag{1.1} Fext=dtdP/o=maG/o(1.1)
2)欧拉定律,给研究物体转动提供了工具。
∑ τ A = d H / A d t + v A / o × P / o (1.2) \sum \tau_A=\frac{dH_{/A}}{dt}+v_{A/o} \times P_{/o} \tag{1.2} τA=dtdH/A+vA/o×P/o(1.2)
同时,为了方便计算,定义转动惯量I。
以下面球的角动量开始引出转动惯量的概念,首先定义一个旋转轴p,则角动量为:
H ‾ / o = ∑ R ‾ i / o × P ‾ / o = ∑ R ‾ i / o × m v ‾ i / o = ∑ m r i / o 2 w p ^ (1.3) \begin{aligned} \overline{H}_{/o} &=\sum \overline{R}_{i/o}\times \overline{P}_{/o} \\ &=\sum \overline{R}_{i/o}\times m\overline{v}_{i/o} \\ &=\sum mr^2_{i/o}w\hat{p}\\ \end{aligned} \tag{1.3} H/o=Ri/o×P/o=Ri/o×mvi/o=mri/o2wp^(1.3)
在这里插入图片描述
根据公式(1.3), H / o = h x i ^ + h y j ^ + h z k ^ H_{/o}=h_x\hat{i}+h_y\hat{j}+h_z\hat{k} H/o=hxi^+hyj^+hzk^,可以用矩阵表示:
H / o = [ h x h y h z ] (1.4) H_{/o}= \begin{bmatrix} h_x \\ h_y \\ h_z \end{bmatrix} \tag{1.4} H/o=hxhyhz(1.4)
整个物体绕 p ^ \hat{p} p^轴旋转的角动量,可以看成分别绕XYZ轴旋转的角动量的线性叠加。
H ‾ x = ∑ r ‾ i × ( m i w x i ^ × r ‾ i ) = ∑ ( a i ^ + b j ^ + c k ^ ) × ( m i w x i ^ × ( a i ^ + b j ^ + c k ^ ) ) = ∑ ( a i ^ + b j ^ + c k ^ ) × ( m i w x b k ^ − m i w x c j ^ ) = ∑ ( − m i w x a b j ^ + m i w x b 2 i ^ − m i w x a c k ^ + m i w x c 2 i ^ ) = ∑ ( m i w x ( b 2 + c 2 ) i ^ − m i w x a b j ^ − m i w x a c k ^ ) (1.5) \begin{aligned} \overline{H}_x&=\sum \overline{r}_i\times(m_iw_x\hat{i} \times \overline{r}_i) \\ &=\sum(a\hat{i}+b\hat{j}+c\hat{k})\times(m_iw_x\hat{i}\times(a\hat{i}+b\hat{j}+c\hat{k}))\\ &=\sum(a\hat{i}+b\hat{j}+c\hat{k})\times(m_iw_xb\hat{k}-m_iw_xc\hat{j})\\ &=\sum(-m_iw_xab\hat{j}+m_iw_xb^2\hat{i}-m_iw_xac\hat{k}+m_iw_xc^2\hat{i})\\ &=\sum(m_iw_x(b^2+c^2)\hat{i}-m_iw_xab\hat{j}-m_iw_xac\hat{k}) \end{aligned} \tag{1.5} Hx=ri×(miwxi^×ri)=(ai^+bj^+ck^)×(miwxi^×(ai^+bj^+ck^))=(ai^+bj^+ck^)×(miwxbk^miwxcj^)=(miwxabj^+miwxb2i^miwxack^+miwxc2i^)=(miwx(b2+c2)i^miwxabj^miwxack^)(1.5)
同理,整个物体绕Y轴和绕Z的角动量分别为:
H ‾ y = ∑ ( − m i w y a b i ^ + m i w y ( a 2 + c 2 ) j ^ − m i w y b c k ^ ) H ‾ z = ∑ ( − m i w z a c i ^ − m i w z b c j ^ + m i w z ( a 2 + b 2 ) k ^ ) (1.6) \begin{aligned} \overline{H}_y &=\sum( -m_iw_yab\hat{i}+m_iw_y(a^2+c^2)\hat{j}-m_iw_ybc\hat{k})\\ \overline{H}_z &=\sum( -m_iw_zac\hat{i}-m_iw_zbc\hat{j}+m_iw_z(a^2+b^2)\hat{k}) \end{aligned} \tag{1.6} HyHz=(miwyabi^+miwy(a2+c2)j^miwybck^)=(miwzaci^miwzbcj^+miwz(a2+b2)k^)(1.6)
结合公式(1.4-1.6),用矩阵形式表示
[ h x h y h z ] = [ ∑ m i ( b 2 + c 2 ) ∑ − m i a b ∑ − m i a c ∑ − m i a b ∑ m i ( a 2 + c 2 ) ∑ − m i b c ∑ − m i a c ∑ − m i b c ∑ m i ( a 2 + b 2 ) ] [ w x w y w z ] = [ I x x − I x y − I x z − I y x I y y − I y z − I z x − I z y I z z ] [ w x w y w z ] (1.7) \begin{aligned} \begin{bmatrix} hx \\ hy \\ hz \end{bmatrix} &= \begin{bmatrix} \sum m_i(b^2+c^2)& \sum -m_iab & \sum -m_iac \\ \sum -m_iab & \sum m_i(a^2+c^2)& \sum -m_ibc \\ \sum -m_iac & \sum -m_ibc & \sum m_i(a^2+b^2) \end{bmatrix} \begin{bmatrix} w_x \\ w_y \\ w_z \end{bmatrix} \\ &= \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{yx} & I_{yy} & -I_{yz} \\ -I_{zx} & -I_{zy} & I_{zz} \end{bmatrix} \begin{bmatrix} w_x \\ w_y \\ w_z \end{bmatrix} \end{aligned} \tag{1.7} hxhyhz=mi(b2+c2)miabmiacmiabmi(a2+c2)mibcmiacmibcmi(a2+b2)wxwywz=IxxIyxIzxIxyIyyIzyIxzIyzIzzwxwywz(1.7)
至此,转动惯量J(moment of inertia)终于出现了,可以将其理解成转动世界中的质量(mass of inertia),并且转动惯量矩阵中的每一项也全部到齐。
J = ∑ m i r i 2 I x x = ∑ m i ( b i 2 + c i 2 ) I x y = ∑ m i a i b i (1.8) \begin{aligned} J&=\sum m_ir^2_i \tag{1.8}\\ I_{xx}&=\sum m_i(b_i^2+c_i^2)\\ I_{xy}&=\sum m_ia_ib_i \end{aligned} JIxxIxy=miri2=mi(bi2+ci2)=miaibi(1.8)
再从wikipedia看一下转动惯量的定义[4]:

The moment of inertia, otherwise known as the mass moment of inertia, angular mass or rotational inertia, of a rigid body is a quantity that determines the torque needed for a desired angular acceleration about a rotational axis; similar to how mass determines the force needed for a desired acceleration. It depends on the body’s mass distribution and the axis chosen, with larger moments requiring more torque to change the body’s rate of rotation.

1 ) 转 动 惯 量 是 物 体 固 有 特 性 , 决 定 使 得 一 个 物 体 具 有 角 加 速 度 所 需 要 的 转 矩 , 没 有 方 向 ; \color{red}{1)转动惯量是物体固有特性,决定使得一个物体具有角加速度所需要的转矩,没有方向;} 1)使;
2 ) 转 动 惯 量 受 物 体 质 量 分 布 和 坐 标 系 选 取 的 影 响 ; \color{red}{2)转动惯量受物体质量分布和坐标系选取的影响;} 2);

2 转动惯量

现在我们得到了一种旋转的情况下的转动惯量,在下面这个部分,需要以一个基本的转动惯量公式为基础,进而得到更多的情况下的转动惯量结果。

2.1 平移

2.1.1 平行轴定理

  • 旋转轴发生变化
    当旋转轴发生变化时,每个子部分 m i m_i mi到旋转轴的距离 r i r_i ri会发生很大的变化,有一种特殊的情况容易处理,两个轴是平行的。假定经过o1旋转轴的转动惯量 J = ∑ m i r i 2 J=\sum m_ir_i^2 J=miri2,绕o2旋转轴的转动惯量仍然从角动量出发进行推导
    H ‾ 2 = ∑ ( d ‾ + r i ‾ ) 2 m i w p ^ = ∑ r i 2 m i w p ^ + ∑ d 2 m i w p ^ + ∑ 2 d ‾ ∗ r i ‾ m i w p ^ (2.1) \begin{aligned} \overline{H}_2 &=\sum (\overline{d}+\overline{r_i})^2 m_iw\hat{p} \\ &=\sum r_i^2m_iw\hat{p}+\sum d^2m_iw\hat{p}+\sum 2\overline{d} * \overline{r_i}m_iw\hat{p} \\ \end{aligned} \tag{2.1} H2=(d+ri)2miwp^=ri2miwp^+d2miwp^+2drimiwp^(2.1)
    当o1是特殊的轴(principal axis)的时候, ∑ m i r i = 0 \sum m_ir_i=0 miri=0,这个时候,
    J 2 = J 1 + ∑ d 2 m i (2.2) J_2=J_1+\sum d^2m_i \tag{2.2} J2=J1+d2mi(2.2)
    在这里插入图片描述
  • 旋转轴不发生平移,仅仅平移坐标系
    因为平移空间不变性,转动惯量和角动量都不会变化。

2.1.2 principal axis

根据公式(2.1),principal axis满足
∑ m i r ‾ i = 0 ∑ m i ( a i i ^ + b i j ^ + c i k ^ ) = 0 \begin{aligned} \sum m_i\overline{r}_i&=0 \\ \sum m_i(a_i\hat{i}+b_i\hat{j}+c_i\hat{k})&=0 \end{aligned} mirimi(aii^+bij^+cik^)=0=0
∑ m i a i = 0 , ∑ m i b i = 0 , ∑ m i c i = 0 \sum m_ia_i=0, \sum m_ib_i=0, \sum m_ic_i=0 miai=0,mibi=0,mici=0
所以,1)principal axis必定过质心;

  • 对于规则物体
    例如下面这个物体,存在一个对称面principal plane, 则principal axis和对称面垂直。
    在这里插入图片描述

2.2 旋转

  • 旋转轴发生旋转,坐标系不变
    旋转轴发生旋转,可以只看成旋转运动,发生了变换,但转动惯量I并没有变化。
    H A ′ = I R w ⃗ H'_A=IR\vec{w} HA=IRw
  • 旋转轴不变,坐标系发生旋转
    参考系旋转了一个角度之后,转动惯量本质上就是一个向量,完全当成向量变换进行处理,此时的转动惯量 I B I_B IB有[3]
    H B = R H A = R ( I w ⃗ A ) = R ( I R T R w ⃗ A ) = ( R I R T ) w ⃗ B = I B w ⃗ B \begin{aligned} H_B&=R H_A \\ &=R(I\vec{w}_A) \\ &=R(IR^TR\vec{w}_A) \\ &=(RIR^T)\vec{w}_B \\ &=I_B\vec{w}_B \end{aligned} HB=RHA=R(Iw A)=R(IRTRw A)=(RIRT)w B=IBw B
    在这里插入图片描述

3 imbalance

解决用牛顿-欧拉法解决动力学的通常步骤:
1)确定系统的自由度,选择合适的坐标系
2)确定equation of motion
3)绘制free body diagram
4)应用力学原理,构建数学方程

3.1 坐标系选取

  • 自由度和坐标系
    下面这个系统如果两个物体只能在x轴运动,则只有两个自由度,用两个坐标系表示。
    在下面这个系统中,方便计算,将三个弹簧处于静态平衡时,作为坐标系o1, o2的位置。
    在这里插入图片描述
  • free body diagram
    绘制fbd的时候,假设物体1,2均发生了正向运动,即x1,x2均大于0,分别分析两个物体的受力。
    在这里插入图片描述

3.2 动不平衡和静不平衡

对于转子来说,静不平衡和动不平衡,会给系统带来vibration,影响产品性能和使用寿命。

3.2.1 平衡

先看一个平衡的例子,计算转动时的A点的转矩

  • 方法1: τ A = d H ‾ A d t + v ‾ A × P / o \tau_A=\frac{d\overline{H}_A}{dt}+\overline{v}_A\times P_{/o} τA=dtdHA+vA×P/o
    H A = ( − x 1 i ^ + z 1 k ^ ) × ( m 1 w k ^ × ( − x 1 ) i ^ ) + ( x 1 i ^ + z 1 k ^ ) × ( m 1 w k ^ × ( x 1 ) i ^ ) = 2 m x 1 2 w k ^ \begin{aligned} H_A & =(-x_1\hat{i}+z_1\hat{k})\times(m_1w\hat{k}\times(-x_1)\hat{i}) \\ & +(x_1\hat{i}+z_1\hat{k})\times(m_1w\hat{k}\times(x_1)\hat{i}) \\ & = 2mx_1^2w\hat{k} \end{aligned} HA=(x1i^+z1k^)×(m1wk^×(x1)i^)+(x1i^+z1k^)×(m1wk^×(x1)i^)=2mx12wk^
    则绕z轴的转矩
    τ A = 2 m x 1 2 w ˙ k ^ \tau_A=2mx_1^2\dot{w}\hat{k} τA=2mx12w˙k^
    转矩用于使系统加速,系统自身是动平衡的。
  • 方法2: H A = [ I ] [ w x , w y , w z ] ′ H_A=[I][w_x, w_y, w_z]' HA=[I][wx,wy,wz]
    H A = [ I ] [ 0 0 w z ] = [ I x z I y z I z z ] w z \begin{aligned} H_A & =[I] \begin{bmatrix} 0 \\ 0 \\ w_z \end{bmatrix} \\ & = \begin{bmatrix} I_{xz} \\ I_{yz} \\ I_{zz} \end{bmatrix}w_z \\ \end{aligned} HA=[I]00wz=IxzIyzIzzwz
    容易得到力矩为:
    τ A = [ I x z I y z I z z ] w ˙ z = 2 m ( x 1 2 + 0 2 ) w z ˙ k ^ \begin{aligned} \tau_A&= \begin{bmatrix} I_{xz} \\ I_{yz} \\ I_{zz} \end{bmatrix}\dot{w}_z \\ & = 2m(x_1^2+0^2)\dot{w_z}\hat{k} \end{aligned} τA=IxzIyzIzzw˙z=2m(x12+02)wz˙k^
  • 方法3:虚拟力
    具体步骤比较简单,省略
    在这里插入图片描述

3.2.2 静不平衡

静不平衡,顾名思义物体静止的时候,可能也会有转动的趋势,需要额外的力去平衡。
静平衡的要求是,物体静止的时候,在任何角度,都没有转动的趋势[1]。
如果此时,旋转轴进行旋转运动,按照方法1,2,计算A点所受的转矩。
τ A = m 1 x 1 z 1 w z ˙ i ^ + m 1 x 1 z 1 w z 2 j ^ + m 1 x 1 2 w ˙ z k ^ − m 1 g x 1 k ^ \tau_A = m_1x_1z_1\dot{w_z}\hat{i}+m_1x_1z_1w_z^2\hat{j}+m_1x_1^2\dot{w}_z\hat{k}-m_1gx_1\hat{k} τA=m1x1z1wz˙i^+m1x1z1wz2j^+m1x12w˙zk^m1gx1k^
因为A点在 i ^ , j ^ \hat{i}, \hat{j} i^,j^方向上有一个转矩,所以棒在旋转的时候会vibration,如[2]视频中所示。
在这里插入图片描述

3.2.3 动不平衡

顾名思义,旋转起来才知道平不平衡,其满足静平衡的要求(旋转轴经过质心),但是动起来以后,需要额外的转矩去平衡。
动平衡则意味着,只要提供F去抵消物体的重力就可以在旋转时保持动平衡[1]。
让圆木棍(L>>R)的旋转轴绕y轴旋转了-45°,计算此时A点的转矩。

  • 旋转角速度
    w ⃗ = [ − 2 2 w 0 2 2 w ] \vec{w}= \begin{bmatrix} -\frac{\sqrt{2}}{2}w \\ 0 \\ \frac{\sqrt{2}}{2}w \end{bmatrix} w =22 w022 w
  • 当前A点的角动量
    H ⃗ / A A = [ 0 0 0 0 m L 2 12 0 0 0 m L 2 12 ] [ − 2 2 w 0 2 2 w ] = 2 2 w m L 2 12 k ^ \begin{aligned} \vec{H}_{/AA} &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{mL^2}{12} & 0 \\ 0 & 0 & \frac{mL^2}{12} \end{bmatrix} \begin{bmatrix} -\frac{\sqrt{2}}{2}w \\ 0 \\ \frac{\sqrt{2}}{2}w \end{bmatrix} \\ & = \frac{\sqrt{2}}{2}w \frac{mL^2}{12}\hat{k} \end{aligned} H /AA=000012mL200012mL222 w022 w=22 w12mL2k^
    这里需要注意的是,坐标系Axyz一直在旋转,所以计算 d H ⃗ d t \frac{d\vec{H}}{dt} dtdH ,按照计算非惯性系下速度的方式计算的。
    这 里 需 要 对 H / A = ∑ r ⃗ i / A × P ⃗ i / O \color{red}{这里需要对H_{/A}=\sum \vec{r}_{i/A}\times \vec{P}_{i/O}} H/A=r i/A×P i/O的理解进行加深。这个公式中,坐标系仍然是0XYZ惯性坐标系,只是支点旋转了惯性坐标系下的A点。
    但 是 本 题 中 , A x y z 不 再 是 惯 性 坐 标 系 了 , 用 A O 表 示 惯 性 坐 标 系 下 的 A 点 \color{red}{但是本题中,Axyz不再是惯性坐标系了,用AO表示惯性坐标系下的A点} Axyz,AOA A A 表 示 非 惯 性 坐 标 系 A x y z 下 的 A 点 。 \color{red}{AA表示非惯性坐标系Axyz下的A点。} AAAxyzA
    H i / A O = m r ⃗ i / A × v ⃗ i / A O d ( H i / A O ) d t = m r ⃗ i / A × d ( v ⃗ i / A O ) d t = m r ⃗ i / A × d ( v ⃗ i / A A ∣ w A Z = 0 + w ⃗ A Z × r ⃗ i / A ) d t = d ( m r ⃗ i / A v ⃗ i / A A ∣ w A Z = 0 ) d t + m r ⃗ i / A × w ⃗ A Z × v ⃗ i / A = d H i / A A d t + w ⃗ A Z × H i / A A \begin{aligned} H_{i/AO} & = m\vec{r}_{i/A} \times \vec{v}_{i/AO} \\ \frac{d(H_{i/AO})}{dt} & = m\vec{r}_{i/A} \times \frac{d( \vec{v}_{i/AO})}{dt} \\ & = m\vec{r}_{i/A} \times \frac{d(\vec{v}_{i/AA}|_{w_{AZ}=0}+\vec{w}_{AZ} \times \vec{r}_{i/A})}{dt} \\ & = \frac{d(m\vec{r}_{i/A}\vec{v}_{i/AA}|_{w_{AZ}=0})}{dt}+m\vec{r}_{i/A} \times \vec{w}_{AZ} \times \vec{v}_{i/A} \\ & = \frac{dH_{i/AA}}{dt}+\vec{w}_{AZ} \times H_{i/AA} \end{aligned} Hi/AOdtd(Hi/AO)=mr i/A×v i/AO=mr i/A×dtd(v i/AO)=mr i/A×dtd(v i/AAwAZ=0+w AZ×r i/A)=dtd(mr i/Av i/AAwAZ=0)+mr i/A×w AZ×v i/A=dtdHi/AA+w AZ×Hi/AA

d H / A O d t = d H / A A d t ∣ w A = 0 + w A × H / A A = 2 2 w ˙ m L 2 12 k ^ + w 2 m L 2 24 j ^ \begin{aligned} \frac{dH_{/AO}}{dt}&=\frac{dH_{/AA}}{dt}|_{w_A=0}+w_A \times H_{/AA} \\ &= \frac{\sqrt{2}}{2}\dot{w}\frac{mL^2}{12}\hat{k}+w^2 \frac{mL^2}{24}\hat{j} \end{aligned} dtdH/AO=dtdH/AAwA=0+wA×H/AA=22 w˙12mL2k^+w224mL2j^
如果从向量的角度理解更加方便,H_{/AO}是一个在OXYZ惯性坐标系下的向量,现在需要求这个向量的导数,则可以直接推出上面的公式。
因为转矩的方向和旋转轴的方向不平行,旋转起来的时候会有vibration。
在这里插入图片描述

4 四类问题

4.1 pure rotation about fixed axis through G

旋转圆木棍(L>>R),旋转轴刚好是principal axis,这类问题直接使用方法2,非常简便。
I = [ m R 2 12 0 0 0 m L 2 12 0 0 0 m L 2 12 ] I= \begin{bmatrix} \frac{mR^2}{12} & 0 &0 \\ 0 & \frac{mL^2}{12} & 0 \\ 0 & 0 & \frac{mL^2}{12} \end{bmatrix} I=12mR200012mL200012mL2
角动量为:
H ⃗ A = I w ⃗ = [ 0 0 0 0 m L 2 12 0 0 0 m L 2 12 ] [ 0 0 w z ] = m L 2 12 w z k ^ \begin{aligned} \vec{H}_A & = I\vec{w} \\ & = \begin{bmatrix} 0 & 0 &0 \\ 0 & \frac{mL^2}{12} & 0 \\ 0 & 0 & \frac{mL^2}{12} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ w_z \end{bmatrix} \\ & = \frac{mL^2}{12}w_z\hat{k} \end{aligned} H A=Iw =000012mL200012mL200wz=12mL2wzk^
A点所受转矩
τ A = d H A d t = m L 2 12 w ˙ z k ^ \begin{aligned} \tau_A &= \frac{dH_A}{dt} \\ & = \frac{mL^2}{12}\dot{w}_z\hat{k} \end{aligned} τA=dtdHA=12mL2w˙zk^

在这里插入图片描述

4.2 pure rotation about fix axis @ A ≠ G A\ne G A=G

绕长方体木块AZ轴进行旋转,计算A点所受的转矩。
长方形木块是规则物体,其principal axis的转动惯量可以查表获取为:
I / G = [ a 2 + b 2 12 m 0 0 0 a 2 + c 2 12 m 0 0 0 b 2 + c 2 12 m ] I_{/G}= \begin{bmatrix} \frac{a^2+b^2}{12}m & 0 & 0 \\ 0 & \frac{a^2+c^2}{12}m & 0 \\ 0 & 0 & \frac{b^2+c^2}{12}m \end{bmatrix} I/G=12a2+b2m00012a2+c2m00012b2+c2m
坐标系变换成AXYZ以后, I z z / A = I z z / G + m d 2 I_{zz/A}=I_{zz/G}+md^2 Izz/A=Izz/G+md2转动惯量变成
I / A = [ a 2 + b 2 12 m 0 0 0 a 2 + c 2 12 m 0 0 0 b 2 + c 2 12 m + m d 2 ] I_{/A}= \begin{bmatrix} \frac{a^2+b^2}{12}m & 0 & 0 \\ 0 & \frac{a^2+c^2}{12}m & 0 \\ 0 & 0 & \frac{b^2+c^2}{12}m+md^2 \end{bmatrix} I/A=12a2+b2m00012a2+c2m00012b2+c2m+md2
A点所受转矩为:
τ A = d H A d t = d ( I z z / A w z ) d t = I z z / A w ˙ z = − m g d s i n ( θ ) \begin{aligned} \tau_A & =\frac{dH_A}{dt} \\ & = \frac{d(I_{zz/A}w_z)}{dt} \\ & = I_{zz/A}\dot{w}_z=-mgdsin(\theta) \end{aligned} τA=dtdHA=dtd(Izz/Awz)=Izz/Aw˙z=mgdsin(θ)

在这里插入图片描述

4.3 No external constraints

在没有任何物理限制的情况下,计算拖动F的一瞬间,A所受的转矩。
没有作用在旋转轴上的外力F,效果上等效于作用在旋转轴上的外力F加转矩T=Fd。
在这里插入图片描述
物体受力有
∑ F e x t = m a x / A = F \begin{aligned} \sum F_{ext}=ma_{x/A}=F \end{aligned} Fext=max/A=F
物体在A点处的转矩
τ ⃗ A = I z z w ˙ k ^ = − F R k ^ \vec{\tau}_A=I_zz\dot{w}\hat{k}=-FR\hat{k} τ A=Izzw˙k^=FRk^

在这里插入图片描述

4.4 Bodies with moving points of constraints

下面这个圆盘在上抛的旋转,根据定义,如果坐标系建在G点,则物体角动量为
H ⃗ i / G O = ∑ r ⃗ i / G × m i v ⃗ i / G O \vec{H}_{i/GO}=\sum \vec{r}_{i/G} \times m_i \vec{v}_{i/GO} H i/GO=r i/G×miv i/GO
更改坐标系到A点,物体本身的运动没有发生任何变化,则物体角动量为
H / A = ∑ ( r G / A + r i ) × m i v i = ∑ r i × m i v i + ∑ r G / A × m i v i = H / G + r G / A × P / o \begin{aligned} H_{/A} &=\sum (r_{G/A}+r_i) \times m_i v_i \\ & = \sum r_i \times m_i v_i + \sum r_{G/A} \times m_i v_i \\ & = H_{/G}+r_{G/A}\times P_{/o} \end{aligned} H/A=(rG/A+ri)×mivi=ri×mivi+rG/A×mivi=H/G+rG/A×P/o
因为角动量不具有空间不变性,这个公式可以解决坐标系位移情况下,角动量的计算。
在这里插入图片描述

  • example 1
    小车上有一个圆柱体在滚动,圆柱体和小车的摩擦力未知。
    运动学上的关系有
    x 2 = x 1 − r θ x ¨ 2 = x ¨ 1 − r θ ¨ \begin{aligned} x_2 & =x_1-r\theta \\ \ddot{x}_2&=\ddot{x}_1-r\ddot{\theta} \end{aligned} x2x¨2=x1rθ=x¨1rθ¨
    本问题最关键的是坐标系的放置,坐标系如果在G点,则摩擦力会无法忽视,所以只能将坐标系放在A点。
    H ⃗ / A = H ⃗ / G + R ⃗ G / A × P ⃗ / o = I z z / G w z k ^ − m r x ˙ 2 k ^ \begin{aligned} \vec{H}_{/A} & =\vec{H}_{/G}+\vec{R}_{G/A}\times \vec{P}_{/o} \\ & = I_{zz/G}w_z\hat{k}-mr\dot{x}_2\hat{k} \\ \end{aligned} H /A=H /G+R G/A×P /o=Izz/Gwzk^mrx˙2k^
    计算A点的转矩
    τ ⃗ A = d ( H ⃗ A ) d t = I z z / G w ˙ z k ^ − m r x ¨ 2 k ^ = I z z / G θ ¨ z k ^ − m r x ¨ 1 k ^ + m r 2 θ ¨ k ^ = 0 \begin{aligned} \vec{\tau}_A & = \frac{d(\vec{H}_{A})}{dt} \\ & = I_{zz/G}\dot{w}_z\hat{k}-mr\ddot{x}_2\hat{k} \\ & = I_{zz/G}\ddot{\theta}_z\hat{k}-mr\ddot{x}_1\hat{k}+mr^2\ddot{\theta}\hat{k} = 0 \end{aligned} τ A=dtd(H A)=Izz/Gw˙zk^mrx¨2k^=Izz/Gθ¨zk^mrx¨1k^+mr2θ¨k^=0
    得到了最终的动力学公式:
    θ ¨ = m r x ¨ 1 m r 2 + I z z / G \ddot{\theta}=\frac{mr\ddot{x}_1}{mr^2+I_{zz/G}} θ¨=mr2+Izz/Gmrx¨1
    在这里插入图片描述
  • example 2
    下面是一个推木箱的例子,小木箱放置在大木箱上,且在A点有一个阻挡物,问多大的F才能使得小木箱翻倒?
    因为A点的受力非常复杂,所以将坐标系放在A点,计算转矩时,这些复杂的受力都可以不考虑了。
    利用方法2,先计算物体相对于Axyz的角动量
    H ⃗ / A = H ⃗ / G + ( 0.5 b i ^ + 0.5 h j ^ ) × ( m x ˙ i ^ ) = I z z / G w z k ^ − 0.5 m h x ˙ k ^ \begin{aligned} \vec{H}_{/A}&=\vec{H}_{/G}+(0.5b\hat{i}+0.5h\hat{j}) \times (m\dot{x}\hat{i}) \\ & = I_{zz/G}w_z\hat{k}-0.5mh\dot{x}\hat{k} \end{aligned} H /A=H /G+(0.5bi^+0.5hj^)×(mx˙i^)=Izz/Gwzk^0.5mhx˙k^
    因为 v ⃗ A \vec{v}_A v A v ⃗ G \vec{v}_G v G同向, v ⃗ A × P ⃗ / o = 0 \vec{v}_A \times \vec{P}_{/o}=0 v A×P /o=0,计算转矩
    τ ⃗ A = d H / A d t + v ⃗ A × P ⃗ / o = I z z / G w z k ^ − 0.5 m h x ¨ k ^ = − 0.5 m g b k ^ \begin{aligned} \vec{\tau}_A&=\frac{dH_{/A}}{dt}+\vec{v}_A \times \vec{P}_{/o} \\ &=I_{zz/G}w_z\hat{k}-0.5mh\ddot{x}\hat{k}=-0.5mgb\hat{k} \end{aligned} τ A=dtdH/A+v A×P /o=Izz/Gwzk^0.5mhx¨k^=0.5mgbk^

因为小木箱刚翻滚的一瞬间,接触面的支持力为0,并且 w z = 0 w_z=0 wz=0,得到F为
F = ( m + M ) x ¨ = ( m + M ) g b h F=(m+M)\ddot{x}=(m+M)g\frac{b}{h} F=(m+M)x¨=(m+M)ghb

这道题如果用方法3,虚拟力去计算非常的简单。
在这里插入图片描述

references

[1] https://www.renown-electric.com/blog/whats-the-difference-between-static-dynamic-balancing/
[2] https://www.youtube.com/watch?v=JB8i7LtY3mU
[3] http://www.kwon3d.com/theory/moi/triten.html
[4] https://en.wikipedia.org/wiki/Moment_of_inertia

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值