MIT_18.03_微分方程_Paul-Dirac_δ_Function_狄拉克函数_Notes

这篇笔记介绍了狄拉克δ函数在微分方程中的作用,特别是在信号处理中的概念和应用。通过拉普拉斯变换探讨了δ函数如何影响系统响应,揭示了δ函数作为卷积运算身份元的特性,并讨论了与单位跃阶函数的关系。此外,还阐述了传递函数在描述系统加权响应和冲激响应中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

狄拉克δ函数

首先了解一下什么是单位脉冲 unit impulse

其实就是单位冲量

在这里插入图片描述

对系统的影响写成一个微分方程
y ′ ′ + y = 1 h u o h ( t ) y'' + y = \frac{1}{h}u_{oh}(t) y+y=h1uoh(t)
我们的任务是研究单位脉冲对系统的影响,于是Laplace变换来乐

在这里插入图片描述

(大雾)
1 h u o h ( t ) = 1 h ( u ( t ) − u ( t − h ) ) ⇝ 1 h 1 − e − h s s \frac{1}{h}u_{oh}(t) = \frac{1}{h}(u(t)-u(t-h)) \leadsto \frac{1}{h}\frac{1-e^{-hs}}{s} h1uoh(t)=h1(u(t)u(th))h1s1ehs
那末,当冲击时间越来越短 但是冲量保持1不变 拉普拉斯变换会怎么样?

lim ⁡ h → 0 1 − e − h s h s = 1 \lim\limits_{h \to 0}\frac{1-e^{-hs}}{hs} = 1 h0limhs1ehs=1

图像呢?

…h越来越小,1/h越来越大,方块面积不变,但越来越窄,越来越高…

于是我们得到了狄拉克δ函数δ(t) Paul Dirac’s Delta Function,它是一个广义函数,在除了零以外的点函数值都等于零,零处的值无法严谨表达,但是其在整个定义域上的积分等于1,拉普拉斯变换为1

在这里插入图片描述


与卷积的关系

u ( t ) f ( t ) ∗ δ ( t ) ⇝ F ( s ) ⋅ 1 u(t)f(t)*\delta(t)\leadsto F(s)\cdot 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值