狄拉克δ函数
引
首先了解一下什么是单位脉冲 unit impulse
其实就是单位冲量
对系统的影响写成一个微分方程
y ′ ′ + y = 1 h u o h ( t ) y'' + y = \frac{1}{h}u_{oh}(t) y′′+y=h1uoh(t)
我们的任务是研究单位脉冲对系统的影响,于是Laplace变换来乐
(大雾)
1 h u o h ( t ) = 1 h ( u ( t ) − u ( t − h ) ) ⇝ 1 h 1 − e − h s s \frac{1}{h}u_{oh}(t) = \frac{1}{h}(u(t)-u(t-h)) \leadsto \frac{1}{h}\frac{1-e^{-hs}}{s} h1uoh(t)=h1(u(t)−u(t−h))⇝h1s1−e−hs
那末,当冲击时间越来越短 但是冲量保持1不变 拉普拉斯变换会怎么样?
lim h → 0 1 − e − h s h s = 1 \lim\limits_{h \to 0}\frac{1-e^{-hs}}{hs} = 1 h→0limhs1−e−hs=1
图像呢?
…h越来越小,1/h越来越大,方块面积不变,但越来越窄,越来越高…
于是我们得到了狄拉克δ函数δ(t) Paul Dirac’s Delta Function,它是一个广义函数,在除了零以外的点函数值都等于零,零处的值无法严谨表达,但是其在整个定义域上的积分等于1,拉普拉斯变换为1
与卷积的关系
u ( t ) f ( t ) ∗ δ ( t ) ⇝ F ( s ) ⋅ 1 u(t)f(t)*\delta(t)\leadsto F(s)\cdot 1