MIT_18.03_微分方程_Laplace_Transform_拉普拉斯变换_Notes

本文深入探讨了拉普拉斯变换,包括它的定义、性质、变换规则、存在性条件以及在解决线性微分方程中的应用。详细介绍了指数位移法则、导数和积分的拉普拉斯变换,并提供了常用公式和解微分方程的例子。此外,还讨论了处理跳跃间断点的方法,如单位跃阶和单位方框函数。拉普拉斯变换是信号处理和微分方程求解的重要工具。
摘要由CSDN通过智能技术生成

Laplace Transform

对于幂级数 power series
∑ 0 ∞ a n x n = A ( x ) \sum_{0}^{\infty}{a_{n}x^n} = A(x) 0anxn=A(x)
左边看成关于n的函数 n从0,1,2…取到 ∞ \infty

那么当n的取值从离散变为连续 时,会发生什么?

…t从0连续取到 ∞ \infty ,再求和…
∫ 0 ∞ a ( t ) x t d t = A ( x ) \int_{0}^{\infty}a(t)x^tdt = A(x) 0a(t)xtdt=A(x)
为了方便 将 x t x^t xt写成 ( e l n x ) t , 0 < x < 1 (e^{lnx})^t ,0<x<1 (elnx)t,0<x<1以使积分收敛

再将 l n x lnx lnx替换为 − s , s > 0 -s,s>0 s,s>0,即得到了 a ( t ) a(t) a(t)的拉普拉斯变换 Laplace Transform

以更正式的形式写出
∫ 0 ∞ f ( t ) e − s t d t = F ( s ) \int_{0}^{\infty}{f(t)e^{-st}}dt = F(s) 0f(t)estdt=F(s)

Notion:

L ( f ( t ) ) = F ( s )    o r    f ( t ) ⇝ F ( s ) \mathcal{L}(f(t)) = F(s) \ \ or \ \ f(t)\leadsto F(s) L(f(t))=F(s)  or  f(t)F(s)

另一种理解:

e − s t e^{-st} est是一个衰减因子,使得一些对于不满足迪利克雷条件的函数 f ( t ) f(t) f(t)乘上其之和变得可积,进而可以“傅立叶变换”,即拉普拉斯变换为加强版的傅立叶变换

变换 & 算子

变换变量改变
f ( t ) ⟶ t r a n s f o r m ⟶ F ( s ) f(t)\stackrel{}{\longrightarrow}\boxed{transform}\stackrel{}{\longrightarrow}F(s) f(t)transformF(s)
算子变量不变
f ( t ) ⟶ o p e r a t o r ⟶ g ( t ) f(t)\stackrel{}{\longrightarrow}\boxed{operator}\stackrel{}{\longrightarrow}g(t) f(t)operatorg(t)


性质

线性 Linearity

L ( f + g ) = L ( f ) + L ( g ) L ( c f ) = c L ( f ) \mathcal{L}(f + g) = \mathcal{L}(f) + \mathcal{L}(g)\\ \mathcal{L}(cf) = c\mathcal{L}(f) L(f+g)=L(f)+L(g)L(cf)=cL(f)

指数位移法则 exponential-shifting law

e a t f ( t ) ⇝ F ( s − a ) e^{at}f(t) \leadsto F(s-a) eatf(t)F(sa)

PROOF
∫ 0 ∞ e a t f ( t ) e − s t d t = ∫ 0 ∞ f ( t ) e − ( s − a ) t d t = F ( s − a ) \int_{0}^{\infty}{e^{at}f(t)e^{-st}dt} = \int_{0}^{\infty}{f(t)e^{-(s-a)t}dt} = F(s-a) 0eatf(t)estdt=0f(t)e(sa)tdt=F(sa)

存在性 Existence
指数阶

f ( t ) f(t) f(t)是指数形式 exponential type/ of exponential order

对于 ∀ t > 0 , ∃ C > 0 , k > 0 \forall t>0,\exists C>0,k>0 t>0,C>0,k>0 这是视频上的定义
s . t . ∣ f ( t ) ∣ ⩽ C e k t s.t.\left|f(t)\right|\leqslant Ce^{kt} s.t.f(t)Cekt
事实上应该是

∃ M , C , α , ∀ t > M , \exist M,C,\alpha,\forall t>M, M,C,α,t>M,
s . t . ∣ f ( t ) ∣ ⩽ C e α t s.t.|f(t)|\leqslant Ce^{\alpha t} s.t.f(t)Ceαt
f ( t ) f(t) f(t) of exponential order α \alpha α f ( t ) f(t) f(t) α \alpha α指数阶函数

其实就是 f ( t ) ∈ O ( e α t ) f(t) \in O(e^{\alpha t}) f(t)O(eαt)

代表 f ( t ) f(t) f(t)最后能被 e − s t e^{-st} est“拉”回来

分段连续

存在有限个跳跃间断点 其余地方连续

存在条件

如果 f ( t ) f(t) f(t)是分段连续的 α \alpha α指数阶函数 则 L ( f ) ( s ) \mathcal{L}(f)(s) L(f)(s)对于所有 R e ( s ) > α Re(s)>\alpha Re(s)>α收敛

PROOF

suppose R e ( s ) > a Re(s) > a Re(s)>a and ∣ f ( t ) ∣ < M e a t |f(t)|<Me^{at} f(t)<Meat, we write s = ( a + α ) + i b s = (a+\alpha)+ib s=(a+α)+ib, where α > 0 \alpha > 0 α>0

then, since ∣ e − b i t ∣ = 1 |e^{-bit}| = 1 ebit=1
∣ f ( t ) e − s t ∣ = ∣ f ( t ) e − ( a + α ) t e − b i t ∣ = ∣ f ( t ) e − ( a + α ) t ∣ < M e − α t |f(t)e^{-st}| = |f(t)e^{-(a+\alpha)t}e^{-bit}| = |f(t)e^{-(a+\alpha)t}|<Me^{-\alpha t} f(t)est=f(t)e(a+α)tebit=f(t)e(a+α)t<Meαt
since ∫ 0 ∞ M e − α t d t \int_0^\infty Me^{-\alpha t}dt 0Meαtdt converges for α > 0 \alpha > 0 α>0 所以拉普拉斯变换收敛

其实就是绝对值审敛法

导数的拉普拉斯变换 t-derivative rule

L ( f ′ ( t ) ) = s F ( s ) − f ( 0 ) L ( f ′ ′ ( t ) ) = s 2 F ( s ) − s f ( 0 ) − f ′ ( 0 ) . . . L ( f ( n ) ( t ) ) = s n F ( s ) − s n − 1 f ( 0 ) − . . . − s f ( n − 2 ) ( 0 ) − f ( n − 1 ) ( 0 ) \mathcal{L}(f'(t)) = sF(s) -f(0)\\ \mathcal{L}(f''(t)) = s^2F(s)-sf(0)-f'(0)\\ ...\\ \mathcal{L}(f^{(n)}(t)) = s^nF(s)-s^{n-1}f(0)-...-sf^{(n-2)}(0)-f^{(n-1)}(0) L(f(t))=sF(s)f(0)L(f(t))=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值