autoware传感器融合相关内容整理

本文详细介绍了Autoware的感知融合方法,包括图像、激光雷达和毫米波雷达的优缺点,以及融合的目的。感知融合分为前融合和后融合,Autoware采用的数据融合方法如pixel_cloud_fusion和range_vision_fusion。融合的前提是统一坐标系、时间同步和传感器标定。range_vision_fusion通过相机内外参将激光雷达点云投影到图像上,匹配并融合2D和3D检测信息,得到带类别的3D障碍物信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Autoware 感知融合

1. 为什么要融合

在这里插入图片描述
不同传感器在不同条件下的性能对比

  • 图像分辨率高,携带丰富的边缘、语义信息,成本低;但是损失了深度信息,夜间环境会大大降低图像检测性能
  • 激光雷达测距准确,不受光线影响;但是波长短,穿透能力不强,远处分辨率太低,成本高
  • 毫米波雷达不易受环境影响,测速准确;但是分辨率低、目标识别难度大

融合的目的:互为补充、冗余设计


2. 感知融合分类

按照融合在目标检测过程所处的位置分类:

分类特点
前融合数据级
对融合后的多维综合数据或特征进行感知
传统、深度学习方法
后融合决策级、目标级
每个传感器各自独立处理生成的目标数据,当所有传感器完成目标数据生成后,再由主处理器进行数据融合
传统方法

Autoware提供的融合方法:

  • pixel_cloud_fusion (ai)

​ 提取图像RGB信息,反投影到LiDAR空间,发布着色的点云

  • range_vision_fusion (ai)

​ 匹配图像2D检测和点云3D检测,将2D检测类别信息赋予3D检测

  • roi_cluster_fusion (universe)

    原理同range_vision_fusion


3. 融合的大前提

统一坐标系和时间

实现三同一不同(同一个目标在同一个时刻出现在不同类别的传感器的同一坐标处)。

统一时间

同步不同传感器的时间戳

  • 时钟同步

    ​ 例:

    ​ 主机通过PPS+NMEA实现与GPS的时钟同步;

    ​ 激光雷达、相机等其他节点通过1588协议实现与主机的时钟同步。

    查找时间戳造成的误差:不同传感器的数据频率不同,通过找相邻时间戳的方式找到最近帧,如果两个时间戳差距较大,障碍物又在移动,会导致较大的同步误差

    在这里插入图片描述

  • 同步触发

​ 例:

​ 以激光雷达作为触发相机的源头,当激光雷达转到某个角度时,才触发该角度的相机,这可以大大减少时间差的问题。

统一坐标系
  • 运动补偿:长周期的传感器在采集数据时,周期开始的时间点和结束时间点车辆是处于不同位置的,导致不同时刻采集的数据所处坐标系不同,因此需要根据车体的运动对传感器采集的数据进行运动补偿。

  • 传感器标定:内参标定和外参标定

    autoware融合需要找到激光雷达坐标系和相机像素坐标系间的转换关系

相机内参标定

  • 小孔成像原理
  • 相机畸变模型
  • 棋盘格标定法(张正友)
    • 通过棋盘格建立辅助坐标系,经过一系列矩阵运算得到内参参数

在这里插入图片描述

相机激光联合标定

  • 解pnp问题
    • PnP (Perspective-n-Point)问题的目的是求解3D-2D点对运动的方法。简单来说,就是在已知n个三维空间点坐标(相对于某个指定的坐标系A)及其二维投影位置的情况下,如何估计相机的位姿(即相机在坐标系A下的姿态)的问题。

在这里插入图片描述


4. range_vision_fusion介绍

在这里插入图片描述

autoware.ai目标检测障碍物msg

  1. 通过相机内外参,将激光雷达检测到的3D障碍物点云投影到图像上

  2. 对投影点求最小外接矩形,获得2D投影bbox

  3. 投影bbox与图像检测的障碍物bbox通过IOU关联匹配

  4. 将关联后的图像bbox标签赋给对应的点云目标,得到带有类别的3D障碍物信息

在这里插入图片描述

融合结果

参考博客

  1. https://www.cnblogs.com/wujianming-110117/p/12963151.html
  2. https://zhuanlan.zhihu.com/p/68717082
  3. http://news.sohu.com/a/520681925_121124366
  4. https://zhuanlan.zhihu.com/p/94244568
  5. https://blog.csdn.net/qq_42722197/article/details/116550061
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值