算法分析与设计实验二 用Dijkstra算法求解图的两点间最短距离

1.问题

用Dijkstra算法求解下图各个顶点的最短距离,给出距离矩阵。
在这里插入图片描述

2.解析

1.找出距离当前节点1最近的节点2(权值最小相邻边)
2.对于节点2的邻居,较之已有的路径,检查是否有前往他们更短路径,如果有,就更新其路径长度,此时节点1-节点3=6,但是经过节点1-节点3=5,小于6,更新路径);
3.更新完所有邻居节点的开销后,又回到第(1)步,即选择距离当前节点最近的节点,前往该节点并更新邻居的路径长度;循环这个过程,直到每个节点都走过;
4.计算最终路径。

3.核心代码


	for(i=1; i<=n; i++) {
		min = maxsize;
		for(j=1; j<=n; j++)
			if(!f[j]&&dis[j]<min) {
				min=dis[j];
				k=j;
			}
		f[k] = 1;
		for(j=1; j<=n; j++)
			if(a[k][j]!=0&&!f[j]&&dis[j]>dis[k]+a[k][j])
				dis[j]=dis[k]+a[k][j];
	}

分析

该算法的时间复杂度为O(n^2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值