04求指定点到图中各点最短距离——Dijkstra算法

本文深入解析Dijkstra算法,一种用于求解单源最短路径的经典算法。通过详细步骤和实例,展示如何从指定起点找到图中各顶点的最短距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

04基于Dijkstra算法的单源最短路径

1.问题

给定一有向图G = <V, E> ,其中V为G的顶点集,E为G的边集,<u, v> 代表从顶点 u 到顶点 v 的有向边,w<u, v> 代表此有向边的权重。

给定一点 u1 ∈ V,如何得到该点到图中各顶点的最短距离?

2.解析

Dijkstra算法的基本思想

Dijkstra算法的基本思想:

  1. G = <V, E>,初始时令 dis={Vu}(Vu为选中的起始点,Vu∈V),T=V-dis={其余顶点},T中顶点对应<Vu,Vi>的距离值若存在,d(V0,Vi)为<V0,Vi>边上的权值;若不存在<Vu,Vi>,d(V0,Vi)为∞(下文代码用INIT表示极大数)。
  2. 从T中选取一个与S中顶点有关联边且权值最小的顶点Vtemp,加入到S中。
  3. 对其余T中顶点的距离值进行修改:若将Vtemp作为中转顶点,从Vu到Vi的距离值缩短,则修改此距离值。重复上述步骤2、3,直到S中包含G中所有顶点,即 S=V,T=Ø 为止。

举个栗子

给定一有8顶点的有向图G = <V, E> ,顶点和边的对应关系及各边权重如下图所示:
Dijkstra
我们以点Va为起始点为例。

1

  • 初始情形1:S={Va}, T={Vb,Vc,Vd,Ve,Vf,Vg,Vh},
    dis[]={0,1,∞,∞,∞,∞,∞,∞}.

然后在dis[]中,选择距Va最短且在T的点Vtemp,将它从T移除并加入S。然后,松弛T其余各点,若这些点到Va的距离大于经过点Vtemp中转的距离,则更新dis[]中点Va到点Vtemp的距离。

接着,继续在dis[]中选择距Va最短且在T的点Vtemp1,重复上述步骤,直至S=V。(后文不再赘述)

2

  • 情形2:加入Vb。S={Va,Vb}, T={Vc,Vd,Ve,Vf,Vg,Vh},
    dis[]={0,1,∞,3,∞,∞,∞,∞}.
    3
  • 情形3:加入Vd。S={Va,Vb,Vd}, T={Vc,Ve,Vf,Vg,Vh},
    dis[]={0,1,4,3,∞,11,∞,∞}.
    4
  • 情形4:加入Vc。S={Va,Vb,Vd,Vc}, T={Ve,Vf,Vg,Vh},
    dis[]={0,1,4,3,∞,11,∞,∞}.
    5
  • 情形5:加入Vf。S={Va,Vb,Vd,Vc,Vf}, T={Ve,Vg,Vh},
    dis[]={0,1,4,3,13,11,∞,∞}.
    6
  • 情形6:加入Ve。S={Va,Vb,Vd,Vc,Vf,Ve}, T={Vg,Vh},
    dis[]={0,1,4,3,13,11,15,∞}.
    7
  • 情形7:加入Vg。S={Va,Vb,Vd,Vc,Vf,Ve,Vg}, T={Vh},
    dis[]={0,1,4,3,13,11,15,18}.
    8
  • 最后情形8:加入Vh。S={Va,Vb,Vd,Vc,Vf,Ve,Vg,Vh}, T={},
    dis[]={0,1,4,3,13,11,15,18}.

至此,Dijkstra算法结束。

3.设计

unsigned int*  Dijkstra(int u, unsigned int mat[][N]) {	//点u为起始点

	unsigned int min,temp,visited[N] = { 0 };	
	//visited[i]数组记录点i是否已找到距离u的最短距离,0未确定,1确定
	unsigned int* dis = (unsigned int*)malloc(sizeof(unsigned int) * N);	//点u到其他点的距离数组
	visited[u] = 1;		
	for (i from 0 to N-1) {
		//根据矩阵初始化起点u到其他点的直接距离
	}	

	for (k from 1 to N) {		//逐一确定剩余N-1个点
		min = INIT; temp = 0;
		for ( i from 0 to N-1) {
			//每次选择距u最短且未被确定过的点加入,将该点下标赋给temp
		}
		visited[temp] = 1;	
		//松弛
		for ( i from 0 to N-1) {
			//更新以temp为中转点的最短距离
		}
	}
	return dis;	//返回最短距离数组
}

4.分析

核心代码块部分大循环里套了两个平行的小循环,其复杂度为:Dijkstra()=O(n2).

进一步分析,若给定有向图的边数相对较少,我们可以改用稀疏矩阵来存储图的相关信息,调整代码,以减少循环的次数,提升程序运行效率。

5.源码

https://github.com/KabgRs/F-SDDR/tree/%E7%AE%97%E6%B3%95%E5%88%86%E6%9E%90%E4%B8%8E%E8%AE%BE%E8%AE%A1%E4%BD%9C%E4%B8%9A/04%E6%B1%82%E6%8C%87%E5%AE%9A%E7%82%B9%E5%88%B0%E5%9B%BE%E4%B8%AD%E5%90%84%E7%82%B9%E6%9C%80%E7%9F%AD%E8%B7%9D%E7%A6%BB_Dijkstra%E7%AE%97%E6%B3%95
(在搜索框复制源码链接后注意删掉“原创声明”)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值