文章目录
总结
- 哈希表的主干是数组
- 复写时有返回值
java7 HashMap
- 整体来说,HashMap 里面是一个数组,然后数组中每个元素是一个单向链表。每个绿色的实体是嵌套类 Entry 的实例,Entry 包含四个属性:key, value, hash 值和用于单向链表的 next。
- capacity:当前数组容量,始终保持 2^n,可以扩容,扩容后数组大小为当前的 2 倍(ConcurrentHashMap )
- loadFactor:负载因子,默认为 0.75。
- threshold:扩容的阈值,等于 capacity * loadFactor
java7 put源码
public V put(K key, V value) {
// 当插入第一个元素的时候,需要先初始化数组大小
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
// 如果 key 为 null,感兴趣的可以往里看,最终会将这个 entry 放到 table[0] 中
if (key == null)
return putForNullKey(value);
// 1. 求 key 的 hash 值
int hash = hash(key);
// 2. 找到对应的数组下标
int i = indexFor(hash, table.length);
// 3. 遍历一下对应下标处的链表,看是否有重复的 key 已经存在,
// 如果有,直接覆盖,put 方法返回旧值就结束了
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
// 4. 不存在重复的 key,将此 entry 添加到链表中,细节后面说
addEntry(hash, key, value, i);
return null;
}
计算具体数组位置 详见java 与 运算
static int indexFor(int hash, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return hash & (length-1);
}
addEntry 添加节点到链表中,主要判断是否需要扩容
void addEntry(int hash, K key, V value, int bucketIndex) {
// 如果当前 HashMap 大小已经达到了阈值,并且新值要插入的数组位置已经有元素了,那么要扩容
if ((size >= threshold) && (null != table[bucketIndex])) {
// 扩容,后面会介绍一下
resize(2 * table.length);
// 扩容以后,重新计算 hash 值
hash = (null != key) ? hash(key) : 0;
// 重新计算扩容后的新的下标
bucketIndex = indexFor(hash, table.length);
}
// 往下看
createEntry(hash, key, value, bucketIndex);
}
// 这个很简单,其实就是将新值放到链表的表头,然后 size++
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}
扩容resize,双倍扩容,并迁移,比如原16位的数组
table[0] --> table[0] + table[16]
table[1] --> table[1] + table[17]
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 新的数组
Entry[] newTable = new Entry[newCapacity];
// 将原来数组中的值迁移到新的更大的数组中
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}
相对而言,java7 get方法比较简单
1.根据 key 计算 hash 值。
2.找到相应的数组下标:hash & (length - 1)。
3.遍历该数组位置处的链表,直到找到相等(==或equals)的 key
为什么扩容是2的次幂
if ((p = tab[i = (n - 1) & hash]) == null)
- 这里返回的是key的hashcode跟初始容量-1做与运算
- 首先length为2的整数次幂的话,h&(length-1)就相当于对length取模,这样便保证了散列的均匀,同时也提升了效率;
- 其次,length为2的整数次幂的话,为偶数。这样length-1为奇数,奇数的最后一位为1,这样便保证了h&(length-1)的最后一位为0,也可能为1(这取决于h的值),即与后的结果可能为偶数也可能是奇数。这样便可以保证散列的均匀性,
- 而如果length为奇数的话,很明显length-1为偶数,它的最后一位是0,这样h&(length-1)的最后一位肯定为0,即只能为偶数,这样任何hash值都只会被散列到数组的偶数下标位置上,这便浪费了近一半的空间。所以,length取2的整数次幂,是为了使不同hash值发生碰撞的概率较小,这样就能使元素在哈希表中均匀地散列
java8 HashMap
图来自https://javadoop.com/post/hashmap
- java8与java7不同之处,利用了红黑树,所以其构成为 数组+链表+红黑树
- java7中,根据hash值可以快速找到数据的下标,但是如果链表很长的话,需要一个一个比较才能找到,时间复杂度取决于链表的长度,为O(n)
- java8中,当链表中元素到达8个,会将链表转换为红黑树,时间复杂度降低为 O(logN)
- java7使用Entry,java8使用Node,Node只用于链表,红黑树使用TreeNode
- 初始值16,默认加载因子0.75,put过程如下:
- 第一次put时(node数组为空),通过resize()从null初始化到16,定位到具体的数组下标,如果没有值,初始化node,直接放入value即可,新插入的值,判断是否超过阈值
- 如果该位置有值,比较该位置的第一个key与当前key是否相等,如果相等,到第3步,如果不相等,判断该节点是否为红黑树:
是——调用红黑树的插入方法
否——插入到链表最后 – 如果新插入的值是第8个,触发转换红黑树操作;如果在链表中找到相同的key,也到第3步 - 对于相同的key,覆盖旧值,并且返回
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
//Entry 又继承自 HashMap.Node……
java8 put源码
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
// 第三个参数 onlyIfAbsent 如果是 true,那么只有在不存在该 key 时才会进行 put 操作
// 第四个参数 evict 我们这里不关心
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 第一次 put 值的时候,会触发下面的 resize(),类似 java7 的第一次 put 也要初始化数组长度
// 第一次 resize 和后续的扩容有些不一样,因为这次是数组从 null 初始化到默认的 16 ,自定义的容量,则会得到大于该数字的第一个2的次幂,比如15->16,44->64
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 找到具体的数组下标,如果此位置没有值,那么直接初始化一下 Node 并放置在这个位置就可以了
if ((p = tab[i = (n - 1) & hash]) == null) //& 二进制运算
tab[i] = newNode(hash, key, value, null);
else {// 数组该位置有数据
Node<K,V> e; K k;
// 首先,判断该位置的第一个数据和我们要插入的数据,key 是不是"相等",如果是,取出这个节点
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 如果该节点是代表红黑树的节点,调用红黑树的插值方法,本文不展开说红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
// 到这里,说明数组该位置上是一个链表
for (int binCount = 0; ; ++binCount) {
// 插入到链表的最后面(Java7 是插入到链表的最前面)
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// TREEIFY_THRESHOLD final类型,为 8,如果新插入的值是链表中的第 8 个
// 会触发下面的 treeifyBin,也就是将链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 如果在该链表中找到了"相等"的 key(== 或 equals)
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
// 此时 break,那么 e 为链表中[与要插入的新值的 key "相等"]的 node
break;
p = e;
}
}
// e!=null 说明存在旧值的key与要插入的key"相等"
// 对于我们分析的put操作,下面这个 if 其实就是进行 "值覆盖",然后返回旧值
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//++modCount用于检测遍历map时候,map是否被其他线程修改
++modCount;
// 如果 HashMap 由于新插入这个值导致 size 已经超过了阈值,需要进行扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
java8 get源码
get操作相对简单,过程如下:
1.计算key的哈希值,定位到数组下标
2.如果该数组的第一个key就是我们要找的,GG,否则继续
3.如果是红黑树node,走红黑树的get方法
4.遍历链表,找到为止
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
// 判断第一个节点是不是就是需要的
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 判断是否是红黑树
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
// 链表遍历
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
时间复杂度
- O(1): 表示算法的运行时间为常量
- O(n): 表示该算法是线性算法
- O(1)就是最低的时空复杂度了,也就是耗时/耗空间与输入数据大小无关,无论输入数据增大多少倍,耗时/耗空间都不变。 哈希算法就是典型的O(1)时间复杂度,无论数据规模多大,都可以在一次计算后找到目标(不考虑冲突的话)
为什么hashmap能保证O(1)
Hashtable的时间复杂度最好是O(1)但是最差是 O(n) 最差的时候也就是hashtable中所有的值的hash值都一样,都分配在一个entry里面,当然这个概率跟中彩票的概率相差不大
注意
HashMap,在使用put的时候,如果添加的是对象的话,所存储的都是对象的引用(地址)
疑问
参考:https://javadoop.com/post/hashmap
https://blog.csdn.net/dam454450872/article/details/80376661