Llama模型结构解析(源码阅读)

  • 参考资料:
    https://zhuanlan.zhihu.com/p/636784644
    https://spaces.ac.cn/archives/8265 ——《Transformer升级之路:2、博采众长的旋转式位置编码》

前言:本次阅读代码位置,在transformers库底下的modeling_llama.py,具体位置在:transformers/models/llama/modeling_llama.py,如下图所示:在这里插入图片描述

1. LlamaModel整体结构流程图

在这里插入图片描述

2. LlamaRMSNorm

  • 代码如下
class LlamaRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        LlamaRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        input_dtype = hidden_states.dtype
        variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)

        return (self.weight * hidden_states).to(input_dtype)
  • RMSNorm的公式如下所示:
    x i 1 n ∑ i = 1 n x i 2 + e p s ∗ w e i g h t i \frac{x_i}{\sqrt{\frac{1}{n}\sum\limits_{i=1}^{n}{x_i}^2 + eps}} * weight_i n1i=1nxi2+eps xiweighti

    • 其中,公式与代码的对应关系如下:
      在这里插入图片描述

3. LlamaMLP

  • 代码如下:
class LlamaMLP(nn.Module):
    def __init__(
        self,
        hidden_size: int,
        intermediate_size: int,
        hidden_act: str,
    ):
        super().__init__()
        self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
        self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

    def forward(self, x):
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
  • 流程图:
    在这里插入图片描述

  • 其中输入为x,输出为y

  • 代码中intermediate_size一般比hidden_size大,我们通过在jupyter notebook中打印Llama-13B的模型,可以看到如下所示:
    在这里插入图片描述

  • 总结:MLP模块就是几个nn.Linear的组合

4. LlamaRotaryEmbedding

  • 代码如下

class LlamaRotaryEmbedding(torch.nn.Module):
    def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
        super().__init__()
        inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
        self.register_buffer("inv_freq", inv_freq)

        # Build here to make `torch.jit.trace` work.
        self.max_seq_len_cached = max_position_embeddings
        t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
        freqs = torch.einsum("i,j->ij", t, self.inv_freq)
        # Different from paper, but it uses a different permutation in order to obtain the same calculation
        emb = torch.cat((freqs, freqs), dim=-1)
        self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
        self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)

    def forward(self, x, seq_len=None):
        # x: [bs, num_attention_heads, seq_len, head_size]
        # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
        if seq_len > self.max_seq_len_cached:
            self.max_seq_len_cached = seq_len
            t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
            freqs = torch.einsum("i,j->ij", t, self.inv_freq)
            # Different from paper, but it uses a different permutation in order to obtain the same calculation
            emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
            self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
            self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
        return (
            self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
            self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
        )
  • 具体的使用,还调用了另外两个函数,如下所示:
def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2 :]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
    # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
    cos = cos.squeeze(1).squeeze(0)  # [seq_len, dim]
    sin = sin.squeeze(1).squeeze(0)  # [seq_len, dim]
    cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed
    
  • 注意这里的实现跟原始推导有点区别,这里实现的方式如下图所示:
    在这里插入图片描述

  • 原始推导如下图所示:
    在这里插入图片描述
    具体可以查看作者的博客:👉戳我👈

  • 总结:RoPE就是在attention计算时,K跟Q做内积之前,先给各自注入位置信息。

结束。

  • 28
    点赞
  • 51
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
部署和精调llama模型通常涉及以下几个步骤: 1. 部署模型:首先,需要将llama模型转换为可以在实际环境中使用的形式。这可能包括将模型转换为可执行文件、将模型封装为服务或API、创建用于模型推理的服务器或服务容器等。这样,其他系统或应用程序就能够与模型进行交互。 2. 数据准备:为了能够对llama模型进行有效的推理,必须准备好相应的数据。这包括选择和准备用于训练和测试模型的数据集。数据集应该具有多样性和代表性,以便模型能够在不同情况下产生准确的预测。 3. 超参数调整:在llama模型中,有一些超参数需要进行调整,以优化模型的性能。通过在训练过程中尝试不同的超参数组合,可以找到最佳的设置。常见的超参数包括学习率、正则化参数等。通过使用交叉验证等技术,可以评估和选取性能最好的超参数。 4. 性能评估:在完成模型的训练和调整后,需要对其进行性能评估。可以使用测试集或交叉验证等技术来评估模型的准确性、精确度、召回率等指标。根据评估结果,可以对模型进行进一步的优化和改进。 5. 模型优化:一旦模型部署并且性能良好,则可以考虑进行进一步的优化。这可能包括模型压缩、剪枝、量化等技术,以减少模型的大小和计算复杂度,从而提高模型在嵌入式设备或边缘环境中的效率。 总之,部署和精调llama模型需要将模型转换为可用形式、准备数据、调整超参数、评估性能和优化模型。这些步骤都是为了确保模型能够在实际应用中产生准确且高效的预测结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值