- 首先要明确的是:只需要将这个图构造成一棵树,就可以遍历整个图。所以,我们需要通过边来生成一颗树(但是这棵树是没有权值的),生成一个无权无向无环图。同时,这道题还需要构造两棵树,因为对于Alice和Bob来说都需要连通。
- 很明显,在这里贪心地先选择类型3的边来构造生成树,因为这里对A和B来说都能连通两个点。然后再选择类型2和类型1,这两个先后顺序随意,因为是分别对A和B来说。
- 那么按照题意,我们需要删一些边,也就是选一些边来构造树的时候,有些边不需要选。那么很明显,当目前的这个边连通的两个点已经在一个连通块里(一棵树),就不需要选这个边了。此时,判断两个点是否在一个集合里,就用到了并查集。
- 算法流程:先去筛选类型3的边,然后是类型2和类型1。对于每条边连接的两个点,用find去查看对于A和B两个并查集来说是否在一个连通块中,在一个连通块的话,这条边就不用选。不在的话,就merge这两个点所在的连通块。同时,因为有可能答案无法遍历完全部的点,所以要记录连通块的数量。每次merge一次,连通块就减少1。最后判断下连通块的数量是否为1。
- 为什么是隐式最小生成树:生成树很好理解,但为什么是最小呢?因为我们虽然不是按照克鲁斯卡尔算法,按照权值贪心地选择最小的边。但是我们仍然是贪心的选择能够使A、B中两个点都连通的类型3的边,然后再去选择类型2或者1。
// 1e5 最小生成树,但是要对于A和B都要连通
// 先枚举type3的边,再枚举type1、2的边
// 对于当前的边在A里面不连通 或者 在B里面里面不连通 都要选
// 两个都连同就不选
class Solution {
private:
static constexpr int MAXN = 1e5 + 5;
int faA[MAXN], faB[MAXN];
vector<vector<int>> edges;
int ca, cb;
int find(int x, int * fa){ // 路径压缩
if (fa[x] < 0) return x;
return fa[x] = find(fa[x], fa);
}
void merge(int rt1, int rt2, int * fa){
fa[rt1] = rt2;
}
int ans = 0; // 总共的边数
void solve(int type){
for (const auto &arr: edges){
int t = arr[0];
if (t != type) continue;
int u = arr[1], v = arr[2];
int fuA = find(u, faA), fvA = find(v, faA);
int fuB = find(u, faB), fvB = find(v, faB);
if (t == 3){
if (fuA == fvA) ans++;
else {
merge(fuA, fvA, faA); merge(fuB, fvB, faB);
ca--; cb--;
}
}
else if (t == 2){
if (fuB == fvB) ans++;
else {
merge(fuB, fvB, faB); cb--;
}
}
else {
if (fuA == fvA) ans++;
else {
merge(fuA, fvA, faA); ca--;
}
}
}
}
public:
int maxNumEdgesToRemove(int n, vector<vector<int>>& edges) {
memset(faA, -1, sizeof(faA));
memset(faB, -1, sizeof(faB));
this->edges = edges;
ca = cb = n;
solve(3);
solve(2);
solve(1);
if (ca > 1 || cb > 1) return -1;
return ans;
}
};