DP(概率专题二)

3 篇文章 0 订阅
1 篇文章 0 订阅

题意:

  • 在一条不满地雷的路上,你现在的起点在1处。在N个点处布有地雷,1<=N<=10。地雷点的坐标范围:[1,100000000].
  • 每次前进p的概率前进一步,1-p的概率前进1-p步。问顺利通过这条路的概率。

>> Scout YYF I <<

Strategy:矩阵加速概率dp? 话说这题是dp嘛

状态: d p [ i ] dp[i] dp[i] 从1点到i点的概率?

边界: dp[n] = 0

合法判断: 本题无

转移方程:

d p [ i ] = d p [ i − 1 ] × p + d p [ i − 2 ] × ( 1 − p ) dp[i] = dp[i-1]\times p+dp[i-2]\times (1-p) dp[i]=dp[i1]×p+dp[i2]×(1p)

attention: 其实并这样做是做不出来的, 因为中间有地雷的地方会影响转移,而且也不知道最终要走到哪里去, 然后经过深思熟虑(参考题解), 发现可以把路分成若干段, 每段的末尾都是地雷, 每段的起始点概率都是1, 这样搞了以后就不难发现, 答案就是每段都不踩地雷的概率, 可以根据乘法原理搞一搞, 然后又因为地雷的范围有点大, 可以考虑用加速矩阵优化(才学)

由 { d p [ i ] = x ∗ d p [ i − 1 ] + y ∗ d p [ i − 2 ] d p [ i − 1 ] = d p [ i − 1 ] + 0 ∗ d p [ i − 2 ] 由\begin{cases} dp[i] = x*dp[i-1] + y* dp[i-2]\\ dp[i-1] = dp[i-1] + 0* dp[i-2] \end{cases} {dp[i]=xdp[i1]+ydp[i2]dp[i1]=dp[i1]+0dp[i2]
构造矩阵:
[ x y 1 0 ] × [ d p [ 2 ] 0 d p [ 1 ] 0 ] = [ x ∗ d p [ 2 ] + y ∗ d p [ 1 ] y d p [ 2 ] 0 ] = [ d p [ 3 ] y d p [ 2 ] 0 ] \\ \begin{bmatrix} x & y \\ 1 & 0 \\ \end{bmatrix} \times \begin{bmatrix} dp[2] & 0 \\ dp[1] & 0 \\ \end{bmatrix} = \begin{bmatrix} x*dp[2] + y*dp[1] & y \\ dp[2] & 0 \\ \end{bmatrix} = \begin{bmatrix} dp[3] & y \\ dp[2] & 0 \\ \end{bmatrix} [x1y0]×[dp[2]dp[1]00]=[xdp[2]+ydp[1]dp[2]y0]=[dp[3]dp[2]y0]

即 :
[ x y 1 0 ] n − 2 × [ d p [ 2 ] 0 d p [ 1 ] 0 ] = [ d p [ n ] 0 d p [ n − 1 ] 0 ] \begin{bmatrix} x & y \\ 1 & 0 \\ \end{bmatrix}^{n-2} \times \begin{bmatrix} dp[2] & 0 \\ dp[1] & 0 \\ \end{bmatrix} = \begin{bmatrix} dp[n] & 0 \\ dp[n-1] & 0 \\ \end{bmatrix} [x1y0]n2×[dp[2]dp[1]00]=[dp[n]dp[n1]00]

然后求快速幂

双倍经验: 加速矩阵优化适用的条件:

  • 可以抽象出一个长度为n的一维向量,该向量在每个单位时间发生一次变化
  • 变化的形式是一个线性递推(只有若干“加法”或者“乘一个系数”的运算)
  • 该递推式在每个时间可能作用于不同的数据上,但本身保持不变
  • 向量变化时间(即递推的轮数)很长,但向量长度n不大。
#include <vector>
#include <cstdio>
#include <cstring>
#include <cassert>
#include <iostream>
#include<iomanip>
#include<map>
#include <algorithm>
using namespace std;
#define _rep(i, a, b) for (ll i = (a); i <= (b); ++i)
#define _rev(i, a, b) for (ll i = (a); i >= (b); --i)
#define _for(i, a, b) for (ll i = (a); i < (b); ++i)
#define _rof(i, a, b) for (ll i = (a); i > (b); --i)
#define maxm 109
#define oo 0x3f3f3f3f
#define ll long long
#define db double
#define eps 1e-8
#define what_is(x) cerr << #x << " is " << x << "s" << endl;
#define met(a, b) memset(a, b, sizeof(a))
#define pi acos(-1.0)
const int maxn = 12;
int n, a[maxn];

struct matrix
{
	db m[3][3];
	matrix() { met(m, 0); }
	matrix operator*(matrix& b)
	{
		matrix r;
		_rep(i, 1, 2)
		{
			_rep(j, 1, 2)
			{
				_rep(k, 1, 2)
				{
					r.m[i][j] += m[i][k] * b.m[k][j];
				}
			}
		}
		return r;
	}
	matrix traval(int a, matrix c)
	{
		matrix ret;
		_rep(i, 1, 2) ret.m[i][i] = 1;
		for (; a; a >>= 1, c = c * c)
		{
			if (a & 1)
				ret = ret * c;
		}
		return ret;
	}
} trans, dp;
db p;
int main()
{
	ios::sync_with_stdio(0);
	while (cin >> n)
	{
		met(a, 0);
		cin >> p;
		_rep(i, 1, n)
			cin >> a[i];
		sort(a + 1, a + 1 + n);
		trans.m[1][2] = 1 - p;
		trans.m[2][1] = 1;
		trans.m[2][2] = p;
		dp.m[1][2] = 1;
		db ans = 1;
		_rep(i, 1, n)
		{
			if (a[i] == a[i - 1])continue;
			matrix tmp;
			tmp = trans.traval(a[i] - a[i - 1], trans);
			tmp = dp * tmp;
			ans *= (1 - tmp.m[1][1]);
		}
		cout << fixed << setprecision(7) << ans << endl;
	}
}

upd 2020.12.10


class Solution {
public:
    /**
     * 返回c[n]%1000000007的值
     * @param n long长整型 即题目中的n
     * @return int整型
     */


    struct matrix {
        long long mat[2][2], mod = 1e9 + 7;

        matrix() { memset(mat, 0, sizeof(mat)); }

        matrix operator*(matrix &b) {
            matrix ret;
            for (int i = 0; i < 2; ++i) {
                for (int j = 0; j < 2; ++j) {
                    for (int k = 0; k < 2; ++k) {
                        ret.mat[i][j] = (ret.mat[i][j] + mat[i][k] * b.mat[k][j]) % mod;
                    }
                }
            }
            return ret;
        }

        matrix qpow(matrix a, long long b  ) {
            matrix r;
            for (int i = 0; i < 2; ++i) {
                r.mat[i][i] = 1;
            }
            for (;b;a = a*a,b >>=1){
                if (b & 1)r = r* a;
            }
            return r;
        }
    }transA, transB, a, b;

    int Answerforcn(long long n) {
        // write code here
        if (n == 1){
            return 14;

        }
        transA.mat[0][0] = 2;
        transA.mat[0][1] = 3;
        transA.mat[1][0] = 1;
        transA.mat[1][1] = 0;
        transA = transA.qpow(transA, n-2);
        a.mat[0][0] = 6;
        a.mat[1][0] = 2;
        transB.mat[0][0] = 3;
        transB.mat[0][1] = 10;
        transB.mat[1][0] = 1;
        transB.mat[1][1] = 0;
        transB = transB.qpow(transB, n-2);
        b.mat[0][0] = 35;
        b.mat[1][0] = 7;
        matrix aa = transA*a, bb = transB*b;
        return aa.mat[0][0] * bb.mat[0][0] % b.mod;
    }
}t;


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
期望dp概率dp是两种不同的动态规划方法。 期望dp是指通过计算每个状态的期望值来求解最终的期望。在期望dp中,我们通常定义dp\[i\]表示在第i个状态时的期望值,然后通过状态转移方程来更新dp数组,最终得到最终状态的期望值。期望dp通常用于求解期望问题,例如求解骰子的期望点数、求解抽奖的期望次数等。 概率dp是指通过计算每个状态的概率来求解最终的概率。在概率dp中,我们通常定义dp\[i\]表示在第i个状态时的概率,然后通过状态转移方程来更新dp数组,最终得到最终状态的概率概率dp通常用于求解概率问题,例如求解抛硬币出现正面的概率、求解从一副牌中抽到红心的概率等。 总结来说,期望dp概率dp的区别在于它们所计算的是不同的值,期望dp计算的是期望值,而概率dp计算的是概率值。 #### 引用[.reference_title] - *1* [概率/期望dp专题](https://blog.csdn.net/qq_34416123/article/details/126585094)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【动态规划】数学期望/概率DP/期望DP详解](https://blog.csdn.net/weixin_45697774/article/details/104274160)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值