一维量子行走及其拓扑结构

一维量子行走及其拓扑结构

0. 经典一维随机行走

一维的随机行走表示的是如下情形:一个人以p的概率向前行走,以(1-p)的概率向后行走。用x表达他的位置,在n步行走之后,为 x ( n ) x(n) x(n). 设初始位置为 x ( 0 ) = 0 x(0)=0 x(0)=0. 显然有如下的结论:如果n是奇数,则x为偶数的概率为0;同理,如果n是偶数,则x为奇数的概率为0. 综上,有概率如下:
P r [ x ( n ) = k ] = { ( n ( n + k ) / 2 ) p ( n + k ) / 2 q ( n − k ) / 2 , ( n + k ) / 2 ∈ Z 0 , otherwise \mathrm{Pr}[x(n)=k] = \left\{ \begin{aligned} &\begin{pmatrix} n\\(n+k)/2 \end{pmatrix}p^{(n+k)/2}q^{(n-k)/2},& (n+k)/2\in Z\\ &\quad0,& \text{otherwise} \end{aligned}\right. Pr[x(n)=k]=(n(n+k)/2)p(n+k)/2q(nk)/2,0,(n+k)/2Zotherwise
这样的随机行走与二项式分布类似,x也是钟形分布。对于二项式分布 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),有 E [ X ] = n p , V a r [ X ] = n p q E[X]=np,\quad Var[X]=npq E[X]=np,Var[X]=npq. 同理对于随机行走而言,有 E [ x ] = n p , V a r [ x ] = 4 n p q E[x]=np,\quad Var[x]=4npq E[x]=np,Var[x]=4npq。 因此我们可以得到一个经典随机行走的重要结论: Δ x ∝ n \Delta x\propto \sqrt{n} Δxn
在这里插入图片描述

1. 一维量子随机行走之 Hadmard 行走

对于一维量子随机行走,如果考虑的也是一个“人”(原子,光子等)在位置空间随机的向前/向后,则不会与经典的情形有什么不同。但是我们可以结合量子中特有的测量。考虑的是一个拿着硬币的“人”,如果这个硬币是正面则向前,背面则向后。但是由于量子叠加性,硬币可以处于叠加态,因此经过移动后会变成硬币和位置空间中的纠缠态。

因此分立一维量子随机行走的过程可以概括为,在参考空间为位置空间 { ∣ x ⟩ } \{|x\rangle\} { x},和一个自旋空间 { ∣ ↑ ⟩ , ∣ ↓ ⟩ } \{|\uparrow\rangle,|\downarrow\rangle\} { } 的总空间中,初始态为 ∣ ψ ( 0 ) ⟩ = ∣ 0 ⟩ ∣ ↑ ⟩ |\psi(0)\rangle=|0\rangle|\uparrow\rangle ψ(0)=0。它在一个算符 U = T S U = TS U=TS 的反复作用下进行演化。有 ∣ ψ ( t ) ⟩ = U t ∣ ψ ( 0 ) ⟩ |\psi(t)\rangle = U^t|\psi(0)\rangle ψ(t)=Utψ(0)。其中,T算符是个控制位移算符,S算符是硬币算符。
T = ∑ x ∣ x + 1 ⟩ ⟨ x ∣ ⊗ Π ↑ + ∣ x − 1 ⟩ ⟨ x ∣ ⊗ Π ↓ \begin{aligned} T = \sum_x|x+1\rangle\langle x|\otimes\Pi_\uparrow+|x-1\rangle\langle x|\otimes\Pi_\downarrow \end{aligned} T=xx+1xΠ+x1xΠ
即,自旋向上即向右移动,自旋向下的时候即向左移动。同时这里考虑,硬币算符为Hadmard变换。 S = H = ∣ + ⟩ ⟨ 0 ∣ + ∣ − ⟩ ⟨ 1 ∣ S = H = |+\rangle\langle 0|+|-\rangle\langle 1| S=H=+0+1 它可以旋转硬币的状态。

∣ ψ ( t ) ⟩ = ∑ x ∣ ψ ( x , t ) ⟩ ∣ x ⟩ , ∣ ψ ( x , t ) ⟩ = ψ R ( x , t ) ∣ ↑ ⟩ + ψ L ( x , t ) ∣ ↓ ⟩ = ( ψ R ( x , t ) ψ L ( x , t ) ) |\psi(t)\rangle=\sum_x|\psi(x,t)\rangle|x\rangle,\quad|\psi(x,t)\rangle = \psi_R(x,t)|\uparrow\rangle+\psi_L(x,t)|\downarrow\rangle = \begin{pmatrix} \psi_R(x,t)\\\psi_L(x,t) \end{pmatrix} ψ(t)=xψ(x,t)x,ψ(x,t)=ψR(x,t)+ψL(x,t)=(ψR(x,t)ψL(x,t))

我们希望得到它的表达式而不是迭代方程。欲探究 ∣ ψ ( t ) ⟩ |\psi(t)\rangle ψ(t) 的表达式,可以利用 ∣ ψ ( t − 1 ) ⟩ |\psi(t-1)\rangle ψ(t1) ∣ ψ ( t ) ⟩ |\psi(t)\rangle ψ(t) 的变化。其中, ∣ ψ ( x , t + 1 ) ⟩ |\psi(x,t+1)\rangle ψ(x,t+1) 只与 ∣ ψ ( x − 1 , t ) ⟩ |\psi(x-1,t)\rangle ψ(x1,t) ∣ ψ ( x , t ) ⟩ |\psi(x,t)\rangle ψ(x,t) ∣ ψ ( x + 1 , t ) ⟩ |\psi(x+1,t)\rangle ψ(x+1,t) 的态才可能演化到这个态。因此有:
ψ ( x , t + 1 ) = − 1 2 ( − 1 1 0 0 ) ψ ( x + 1 , t ) + 1 2 ( 0 0 1 1 ) ψ ( x − 1 , t ) = M − ψ ( x + 1 , t ) + M + ψ ( x − 1 , t ) \begin{aligned} \psi(x,t+1) &= -\frac{1}{\sqrt{2}}\begin{pmatrix}-1&1\\0&0\end{pmatrix} \psi(x+1,t)+\frac{1}{\sqrt{2}}\begin{pmatrix}0&0\\1&1\end{pmatrix}\psi(x-1,t) \\ & = M_-\psi(x+1,t) + M_+\psi(x-1,t) \end{aligned} ψ(x,t+1)=2 1(1010)ψ(x+1,t)+2 1(0101)ψ(x1,t)=Mψ(x+1,t)+M+ψ(x1,t)
在计算中我们可以利用一种特殊的Fiourier 变换,它能将在从 − ∞ -\infty + ∞ +\infty + 的整数空间Z投影到 [ − π , π ] [-\pi, \pi] [π,π] 的连续空间上,有:
f ~ ( k ) = ∑ x f ( x ) e i k x f ( x ) = 1 2 π ∫ − π π d k f ~ ( k ) e − i k x \begin{aligned} \tilde{f}(k) &= \sum_x f(x)e^{ikx} \\ f(x) &= \frac{1}{2\pi}\int_{-\pi}^\pi dk \tilde{f}(k) e^{-ikx} \end{aligned} f~(k)f(x)=xf(x)eikx=2π1ππdkf~(k)eikx
因此,尝试在k空间中讨论上述方程。
ψ ( x , t + 1 ) = M − ψ ( x + 1 , t ) + M + ψ ( x − 1 , t ) ψ ( k , t + 1 ) = ∑ x ψ ( x , t + 1 ) e i k x = M − ∑ x ψ ( x + 1 , t ) e i k x + M + ∑ x ψ ( x − 1 , t ) e i k x = M − e − i k ∑ x ψ ( x + 1 , t ) e i k ( x + 1 ) + M + e i k ∑ x ψ ( x − 1 , t ) e i k ( x − 1 ) = ( M − e − i k + M + e i k ) ψ ( k , t ) = M k ψ ( k , t ) \begin{aligned} \psi(x,t+1) &= M_-\psi(x+1,t) + M_+\psi(x-1,t) \\ \psi(k,t+1) &= \sum_x \psi(x,t+1) e^{ikx}\\ & = M_-\sum_x \psi(x+1,t)e^{ikx} + M_+\sum_x \psi(x-1,t)e^{ikx}\\ & = M_-e^{-ik}\sum_x \psi(x+1,t)e^{ik(x+1)}+M_+e^{ik}\sum_x \psi(x-1,t)e^{ik(x-1)}\\ & = (M_-e^{-ik}+M_+e^{ik}) \psi(k,t)\\ & = M_k \psi(k,t) \end{aligned} ψ(x,t+1)ψ(k,t+1)=Mψ(x+1,t)+M+ψ(x1,t)=x

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值