Pandas中loc和iloc函数区别

Pandas中的.loc和.iloc是两种常用的索引方式。.loc主要基于标签进行操作,适合处理行名列名,同时能接受布尔数组。.iloc则基于整数位置进行索引,适用于行和列的零索引选择。两者都可以处理切片和布尔数组,但在使用切片时,.loc包含起始和结束标签,而.iloc包含起始和结束的位置。

.loc[]主要基于标签(就是行名列名),但也可以与布尔数组一起使用
.iloc[]主要基于整数位置(行列索引都是从零开始,内在顺序),但也可以与布尔数组一起使用。

.loc[]用法

以下都是在jupyter中代码块
先定义一个DataFrame

import numpy as np
import pandas as pd
data=pd.DataFrame(np.arange(16).reshape(4,4),index=['one','two','three','four'],columns=['a','b','c','d'])
data

在这里插入图片描述
[ ]里可以输入什么

单个标签

在这里插入图片描述

标签列表

在这里插入图片描述

带有标签的切片对象(与通常的 python 切片相反,包括开始和停止)

在这里插入图片描述
在这里插入图片描述

与要切片的轴的长度相同的布尔数组

在这里插入图片描述
在这里插入图片描述

.iloc[]用法

[ ]里可以输入什么

单个整数

在这里插入图片描述
取第一行

整数的列表或数组

在这里插入图片描述
取一二行

具有整数的切片对象

在这里插入图片描述
前两行两列的交集

布尔数组

在这里插入图片描述
取前两行
在这里插入图片描述
前两行两列的交集

总结

.loc[[start:end],[start:end]]和.iloc[[start:end],[start:end]]
区别在于.loc使用的是行列标签(定义的具体行名和列名),而.iloc使用的是行列整数位置(从零开始)

参考

DataFrame.loc
DataFrame.iloc

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值