各种数学公式的含义????

本文详细解释了rmse(均方根误差)、nDCG@10、NDCG(标准化折扣累积增益)、AUC(ROC曲线下的面积)和HR@10(命中率@10)这五个重要的评估指标,它们分别用于衡量预测模型、信息检索系统、排序任务和推荐系统的表现。理解这些指标有助于优化模型和系统的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

rmse是什么指标

RMSE代表均方根误差(Root Mean Square Error),是一种常用于评估预测模型性能的指标。它衡量了观测值与预测值之间的差异程度。

计算RMSE的步骤如下:

  1. 计算每个观测值的预测误差(残差),即观测值与对应的预测值之差。
  2. 对所有预测误差进行平方,得到每个误差的平方。
  3. 计算这些平方误差的平均值。
  4. 将平均平方误差取平方根,得到RMSE。

数学公式表示如下:

RMSE = sqrt(Σ(predicted_i - actual_i)^2 / n)

其中:

  • ( predicted_i ) 是第i个观测值的预测值。
  • ( actual_i ) 是第i个观测值的实际值。
  • ( n ) 是总观测值的数量。

RMSE的值越小,表示模型预测的准确度越高,因为它表示了观测值与预测值之间的平均误差的大小。RMSE通常用于回归模型的评估,例如线性回归、决策树回归等。

nDCG@10是什么指标

nDCG@10代表着"Normalized Discounted Cumulative Gain at 10",是一种用于衡量信息检索或推荐系统中排名质量的指

<think>好的,用户之前问过XLSTM为什么要在输入进入块之前进行批归一化,现在用户接着问“其公式为?”,这里的“其”应该指的是批归一化的公式。用户可能是在理解之前的内容后,想要具体了解批归一化的数学表达,以便更深入理解其工作机制。 首先,我需要确认用户是否真的在问批归一化的公式,因为之前的问题确实提到了批归一化。接下来,我需要回忆批归一化的标准公式,并结合XLSTM的上下文来解释。用户可能对批归一化有一定了解,但需要具体的数学表达来巩固理解,或者他们想将公式应用到自己的模型中。 需要注意的是,XLSTM本身可能有特定的结构,但批归一化的公式是通用的。不过,在XLSTM的上下文中应用时,可能有一些细节需要注意,比如归一化的维度或者是在时间步上的处理。因此,在解释公式时,应该提到这些应用上的考虑,比如在序列数据中如何处理每个时间步的归一化,是否在时间维度上进行归一化等。 此外,用户可能想知道批归一化在训练和测试阶段的不同处理方式,比如训练时使用mini-batch的均值和方差,而测试时使用移动平均。这部分内容对于正确实现批归一化很重要,应该在回答中提及。 另外,用户可能对公式中的参数γ和β的作用不太清楚,需要解释它们是可学习的缩放和平移参数,用于保留模型的表达能力,避免归一化导致的信息丢失。 最后,要确保公式的LaTeX格式正确,按照用户之前的系统级指令,独立公式使用$$...$$,行内公式使用$...$。同时,结构要清晰,分点说明,帮助用户逐步理解。 总结下来,我需要分步骤介绍批归一化的公式,解释每个部分的含义,并结合XLSTM的应用场景说明注意事项,确保回答既准确又易于理解。</think>在XLSTM中,**输入前的批归一化(Batch Normalization, BN)**的公式遵循标准的批归一化定义,但需注意其应用位置(在输入进入XLSTM块之前)。以下是具体公式及说明: --- ### **批归一化公式** 1. **输入定义**: 设输入为 $X \in \mathbb{R}^{B \times T \times d}$,其中: - $B$:批大小(batch size) - $T$:序列长度(时间步数) - $d$:输入特征维度 2. **归一化过程**: 对每个特征维度 $d$,在**当前mini-batch的所有样本和所有时间步**上计算均值和方差: $$ \mu_d = \frac{1}{B \cdot T} \sum_{i=1}^{B} \sum_{t=1}^{T} X_{i,t,d} $$ $$ \sigma_d^2 = \frac{1}{B \cdot T} \sum_{i=1}^{B} \sum_{t=1}^{T} (X_{i,t,d} - \mu_d)^2 $$ 3. **标准化与变换**: 对输入 $X$ 进行归一化并加入可学习参数 $\gamma_d$(缩放)和 $\beta_d$(平移): $$ \hat{X}_{i,t,d} = \gamma_d \cdot \frac{X_{i,t,d} - \mu_d}{\sqrt{\sigma_d^2 + \epsilon}} + \beta_d $$ 其中 $\epsilon$ 是为数值稳定性添加的小常数(如 $10^{-5}$)。 --- ### **关键说明** 1. **XLSTM中的特殊处理**: - 序列数据需在**时间步维度 $T$ 上保留动态性**,因此BN计算均值和方差时包含所有时间步,但归一化独立作用于每个时间步的特征。 - 归一化后的输出 $\hat{X}$ 作为XLSTM块的输入,保持序列的时序关系不变。 2. **训练与推理阶段的差异**: - **训练时**:使用当前mini-batch的 $\mu_d$ 和 $\sigma_d^2$。 - **推理时**:使用训练阶段累积的移动平均(running mean/variance),避免依赖单批次数据。 --- ### **公式意义** - **$\gamma$ 和 $\beta$ 的作用**: 允许模型决定是否保留原始特征分布(如设 $\gamma=\sqrt{\sigma_d^2 + \epsilon}$,$\beta=\mu_d$ 时可还原原始数据),增强灵活性。 - **与普通BN的区别**: 普通BN可能仅针对非序列数据(如图像),而XLSTM的BN需处理序列维度,需确保时间步间动态性不被破坏。 --- ### **示意图** ``` 原始输入 $X$ → [批归一化层] → 归一化后 $\hat{X}$ → XLSTM块 |计算 μ, σ²| |可学习 γ, β| ``` 通过上述公式,XLSTM在输入前稳定了特征分布,同时保留序列的动态信息,为后续门控机制(如遗忘门、输入门)提供更鲁棒的输入。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值