如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a[2i]<a[2i-1], a[2i+1]>a[2i]。
小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。
输入格式
输入一行包含两个整数 m,n。
输出格式
输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。
样例输入
3 4
样例输出
14
样例说明
以下是符合要求的摆动序列:
2 1 2
2 1 3
2 1 4
3 1 2
3 1 3
3 1 4
3 2 3
3 2 4
4 1 2
4 1 3
4 1 4
4 2 3
4 2 4
4 3 4
评测用例规模与约定
对于 20% 的评测用例,1 <= n, m <= 5;
对于 50% 的评测用例,1 <= n, m <= 10;
对于 80% 的评测用例,1 <= n, m <= 100;
对于所有评测用例,1 <= n, m <= 1000。
思路:f[len][i]表示的含义是长度为len的串末尾是i。
递推关系为:
如果长度为偶数,因为偶数i要比他上一个数要小,所以f[len][i]+=f[len-1][k] k为所有大于末尾i的数字直到n
如果长度为奇数,因为奇数i要比他上一个数要大,所以f[len][i]+=f[len-1][j] j为所有小于i的数
#include<bits/stdc++.h>
using namespace std;
int f[1000][1000];
int j,k;
int n,m,len,i;
int main(){
memset(f,0,sizeof(f));
for(int i=1;i<1000;i++)
f[1][i]=1;
scanf("%d %d",&m,&n);
int ans=0;
for(len=2;len<=m;len++)
for( i=1;i<=n;i++){
if(len%2==0){
for( k=i+1;k<=n;k++)
f[len][i]+=f[len-1][k];
}
else{
for(j=1;j<i;j++)
f[len][i]+=f[len-1][j];
}
}
for(int i=1;i<=n;i++)
ans+=f[m][i];
printf("%d",ans);
}