蓝桥校内模拟赛摆动数列(动态规划)

如果一个序列的奇数项都比前一项大,偶数项都比前一项小,则称为一个摆动序列。即 a[2i]<a[2i-1], a[2i+1]>a[2i]。
  小明想知道,长度为 m,每个数都是 1 到 n 之间的正整数的摆动序列一共有多少个。

输入格式

  输入一行包含两个整数 m,n。

输出格式

  输出一个整数,表示答案。答案可能很大,请输出答案除以10000的余数。

样例输入

3 4

样例输出

14

样例说明

  以下是符合要求的摆动序列:
  2 1 2
  2 1 3
  2 1 4
  3 1 2
  3 1 3
  3 1 4
  3 2 3
  3 2 4
  4 1 2
  4 1 3
  4 1 4
  4 2 3
  4 2 4
  4 3 4

评测用例规模与约定

  对于 20% 的评测用例,1 <= n, m <= 5;
  对于 50% 的评测用例,1 <= n, m <= 10;
  对于 80% 的评测用例,1 <= n, m <= 100;
  对于所有评测用例,1 <= n, m <= 1000。

思路:f[len][i]表示的含义是长度为len的串末尾是i。

递推关系为:

如果长度为偶数,因为偶数i要比他上一个数要小,所以f[len][i]+=f[len-1][k]  k为所有大于末尾i的数字直到n

如果长度为奇数,因为奇数i要比他上一个数要大,所以f[len][i]+=f[len-1][j]   j为所有小于i的数

#include<bits/stdc++.h>
using namespace std;
int f[1000][1000];
int j,k;
int n,m,len,i;
int main(){
	memset(f,0,sizeof(f));
	for(int i=1;i<1000;i++)	
	f[1][i]=1;
	
	scanf("%d %d",&m,&n);
	int ans=0;
	for(len=2;len<=m;len++)
	for( i=1;i<=n;i++){
		if(len%2==0){
			for( k=i+1;k<=n;k++)
			f[len][i]+=f[len-1][k];
		}
		else{
			for(j=1;j<i;j++)
			f[len][i]+=f[len-1][j];
		}
	}

	for(int i=1;i<=n;i++)
	ans+=f[m][i];
	printf("%d",ans);
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值