吴恩达-从人类反馈中进行强化学习RLHF

吴恩达-从人类反馈中进行强化学习RLHF
https://www.bilibili.com/video/BV1R94y1P7QX?p=1&vd_source=e7939b5cb7bc219a05ee9941cd297ade

在这里插入图片描述

1、公开的LLM,Llama2,
使用LLM对同一个提示产生多个不同输出,然后人类评估这些输出。评估方法是对比两个输出,找出他们喜欢的那个。于是形成的就是偏好数据集。preference dataset。数据集捕捉的是标注员的偏好而不是人类整体的偏好。偏好数据集比较难建立,取决于你希望你的模型更积极还是更有用。

2、用这个偏好数据集训练奖励模型。
通常奖励模型是另一个LLM。
推理阶段,奖励模型接收一个提示和答案,返回一个标量值,这个标量值表明了答案有多好。奖励模型本质上是一个回归模型,输出数字。

在这里插入图片描述
输入是三元组:(提示,完成1,完成2),输出一个分数。
损失函数:分数的结合
在这里插入图片描述

第二个数据集,提示数据集
强化学习:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值