核磁共振成像基本原理——杨正汉(1)

1. MRI仪硬件基本知识

1.1 主磁体

2. 梯度系统

在头部电流线圈产生的磁场与主磁场一致,故加强了磁场强度,在脚步电流线圈产生的磁场方向与主磁场相反,故减少了磁场强度。

1.3 射频系统

1.4 计算机系统及谱仪

2. MRI成像的物理学原理

2.1 人体MR成像的物质基础

2.2 在磁场中的宏观磁化矢量

MRI不能检测微观的磁化矢量,怎么检测宏观的磁化矢量呢?把人体放进大磁场即可。
杂乱无章的小磁场就会受大磁场影响,变得很有序。有两种状态:一个是与大磁场方向(H原子能级太小,产生的磁场太小了,反抗不了)一致,一个是与大磁场方向(H原子原子能级大,产生的磁场太大了,可以反抗)相反。因为人体内能量低的H原子占多数,总体抵消后产生的磁化矢量为纵向磁化矢量。

答案是否定的

氢质子在旋转的时候,横向磁化矢量被抵消了,如下图。


结论

2.3 MRI可以探测出什么磁化矢量呢?

因为纵向磁化矢量相对于主磁场还是太小了。

2.4 射频线圈关闭后采集信号

失相位是指:氢质子的位置不再统一了,而是随机地分在每个位置,横向磁化矢量就逐渐消失。


2.5 磁共振加权成像

T1加权成像是以纵向磁化矢量为准,那怎么探测呢?
利用脉冲信号,将T1得到的纵向磁化矢量转为横向磁化矢量后,立马采集即可。

3. MRI空间定位

MR线圈是探测每一层的信息,那怎么对应像素呢?

假设一层图像为3X3,就9个像位点,添加梯度场后,即右高左低的梯度场,每个像素的进度频率变化了。

我们只考虑3个像素,添加一个前高后低的梯度场,他们的进度频率不同,进度快的相位跑到前面去,进度慢的在后面;
这时候,然后关掉相位梯度场,等他们的进度频率一致时,但是相位被保留了下来。

第一个相位梯度场可以采集第一个和第二个(相反);第二个梯度场可以采集第一个和第三个信号,。。。

从K空间角度总结MRI成像的过程:

### 使用MATLAB实现核磁共振成像MRI)原理仿真 #### MRI基本原理概述 核磁共振成像(MRI)是一种利用原子核在磁场中的行为来进行成像的技术。当人体置于强磁场中时,氢质子会按照外加磁场方向排列并发生自旋运动。施加特定频率的射频脉冲可以改变这些质子的状态,在停止发射射频脉冲之后,质子返回到原来状态的过程中会产生信号,该信号被接收线圈捕捉后经计算机处理形成图像。 #### MATLAB仿真实现步骤 ##### 创建虚拟环境与参数设定 首先定义一些必要的物理常数以及实验条件下的变量设置: ```matlab % 物理常数 gamma = 2 * pi * 42.58e6; % 氢质子旋磁比 (Hz/Tesla) % 实验条件 B0 = 1.5; % 主磁场强度 Tesla T1 = 900; % 纵向弛豫时间 ms T2 = 100; % 横向弛豫时间 ms TR = 3*T1; % 重复周期 TR > T1*3 TE = min(T2, 0.33*T1); % 回波延迟 TE < T2 && TE < 0.33*T1 FOV = [256 256]; % 扫描视野大小像素单位 N = prod(FOV); % 总采样点数目 ``` ##### 构造k空间填充函数 K空间是一个二维傅里叶变换域表示的空间分布图,它包含了重建最终MR图像所需的信息。下面这段代码展示了如何构建一个简单的梯度回波序列对应的k空间轨迹: ```matlab function kspace = generate_kspace(Nx,Ny) [X,Y]=meshgrid(-floor((Ny-1)/2):floor((Ny-1)/2),... -floor((Nx-1)/2):floor((Nx-1)/2)); R=sqrt(X.^2+Y.^2); theta=atan2(Y,X); kspace=zeros(size(R)); for i=1:Nx*Ny r=R(i)/(max(max(R))); phi=theta(i)+pi/2; t=linspace(0,2*pi,round(sqrt(r)*length(theta))'); x=r*cos(t)'; y=r*sin(t)'; idx=sub2ind([Ny Nx], round(mod(y+Ny/2,Ny))+1,... round(mod(x+Nx/2,Nx))+1 ); kspace(idx)=exp(-j*t).*r; end end ``` ##### 进行数值模拟得到原始信号 根据之前所设参数计算出不同位置处水分子产生的自由感应衰减(FID)信号,并将其映射至相应的k空间网格上完成一次完整的扫描过程: ```matlab fid_signal = zeros(N, length(TR)); for n = 1:length(TR) Mz = exp(-TR(n)./T1); % Z轴方向上的纵向磁化矢量分量随时间演化规律 Mxy = sqrt(1-Mz.^2).*exp(-t./T2); % XY平面内的横向磁矩随着时间演变情况 fid_signal(:,n) = fftshift(ifft2(fftshift(generate_kspace(FOV(1), FOV(2)).* ... repmat(exp(j*(omega.*t)), [size(k_space)])))); end ``` 此处`generate_kspace()`为前面提到过的构造k空间的方法;而`ifft2()`, `fftshift()`则是用来做逆离散傅立叶变换及其移位操作以便于后续可视化展示。 ##### 图像重构显示 最后一步是对采集来的FID信号执行反向FT运算从而获得实际可观察的人体断层解剖结构影像: ```matlab image(abs(fid_signal)) colormap(gray()) axis equal tight off title('Simulated MR Image') colorbar() ``` 以上就是基于MATLAB平台下对MRI工作流程的一个简化版描述[^1]。值得注意的是这只是一个非常基础的概念验证性质的例子,真实的临床应用级MRI系统要复杂得多,涉及到更多高级特性如多通道相控阵列天线技术、并行成像加速策略等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值