分布式框架Ray的高级模式:重叠计算与通讯

重叠计算与通信

有时,应用程序的一个组件既需要进行计算密集型工作,又需要与其他进程通信。
理想情况下,您希望重叠计算和通信,以尽量减少不执行计算密集型工作所花费的时间。
如果您等待远程任务返回,那么CPU进程将是空闲的。

在某些情况下,这种行为是不可取的,例如:

  • 如果计算一个工作项所花费的时间比系统中的RTT时间长得多,这就不太可能有显著的好处。
  • 如果计算每个任务(或本例中的工作项)的时间是高度可变的,则可以通过将小任务阻塞在大任务之后来增加它们的延迟

在下面的示例中,worker actor从队列中提取工作,然后对其进行一些计算。

在较差的代码示例中,我们在请求工作项后立即调用ray.get(),因此在RPC(远程过程调用)运行时阻塞,导致CPU时间空闲。
在正确的代码示例中,我们在处理当前工作项之前先发制人地请求下一个工作项,这样我们就可以在RPC运行时使用CPU。

"坏模式:不重叠计算与通信"
@ray.remote
class Worker :
    def __init__ (self, work_queue):
        self.work_queue = work_queue
    def run (self):
        while True :
        	"先执行RPC(远程调用),在CPU中执行(获取对象)"
            # Get work from the queue.
            work_item = ray.get(self.work_queue.get_work_item.remote())
            # Do work.
            self.process(work_item)
"好模式:重叠计算与通信"
@ray.remote
class Worker :
    def __init__ (self, work_queue):
        self.work_queue = work_queue
    def run (self):
        self.work_future = self.work_queue.get_work_item.remote()
        while True :
        	"这两步是可以并行计算的(RPC和CPU同时使用)"
            # Get work from the queue.
            work_item = ray.get(self.work_future)
            self.work_future = self.work_queue.get_work_item.remote()
            # Do work.
            self.process(work_item)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值