matplotlib学习之五

1. matplotlib的绘图样式(style)

在matplotlib中,要想设置绘制样式,最简单的方法是在绘制元素时单独设置样式。 但是有时候,当用户在做专题报告时,往往会希望保持整体风格的统一而不用对每张图一张张修改,因此matplotlib库还提供了四种批量修改全局样式的方式

1.1 matplotlib预先定义样式

matplotlib贴心地提供了许多内置的样式供用户使用,使用方法很简单,只需在python脚本的最开始输入想使用style的名称即可调用。

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
plt.style.use('default')
plt.plot([1,2,3,4],[2,3,4,5])

在这里插入图片描述

plt.style.use('ggplot')
plt.plot([1,2,3,4],[2,3,4,5])

在这里插入图片描述

print(plt.style.available)

[‘Solarize_Light2’, ‘_classic_test’, ‘_classic_test_patch’, ‘bmh’, ‘bright’, ‘classic’, ‘dark_background’, ‘fast’, ‘fivethirtyeight’, ‘ggplot’, ‘grayscale’, ‘grid’, ‘high-vis’, ‘ieee’, ‘muted’, ‘no-latex’, ‘notebook’, ‘pgf’, ‘retro’, ‘scatter’, ‘science’, ‘seaborn’, ‘seaborn-bright’, ‘seaborn-colorblind’, ‘seaborn-dark’, ‘seaborn-dark-palette’, ‘seaborn-darkgrid’, ‘seaborn-deep’, ‘seaborn-muted’, ‘seaborn-notebook’, ‘seaborn-paper’, ‘seaborn-pastel’, ‘seaborn-poster’, ‘seaborn-talk’, ‘seaborn-ticks’, ‘seaborn-white’, ‘seaborn-whitegrid’, ‘std-colors’, ‘tableau-colorblind10’, ‘vibrant’]

1.2 用户自定义stylesheet

在任意路径下创建一个后缀名为mplstyle的样式清单,编辑文件添加以下样式内容

axes.titlesize : 24
axes.labelsize : 20
lines.linewidth : 3
lines.markersize : 10
xtick.labelsize : 16
ytick.labelsize : 16

引用自定义stylesheet后观察图表变化。

plt.style.use('presentation.mplstyle')
plt.plot([1,2,3,4],[2,3,4,5])

在这里插入图片描述
值得特别注意的是,matplotlib支持混合样式的引用,只需在引用时输入一个样式列表,若是几个样式中涉及到同一个参数,右边的样式表会覆盖左边的值。

plt.style.use(['dark_background', 'presentation.mplstyle'])
plt.plot([1,2,3,4],[2,3,4,5])

在这里插入图片描述

1.3 设置rcparams

我们还可以通过修改默认rc设置的方式改变样式,所有rc设置都保存在一个叫做 matplotlib.rcParams的变量中。
修改过后再绘图,可以看到绘图样式发生了变化。

plt.style.use('default') # 恢复到默认样式
plt.plot([1,2,3,4],[2,3,4,5])

在这里插入图片描述

mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['lines.linestyle'] = '--'
plt.plot([1,2,3,4],[2,3,4,5])

在这里插入图片描述
另外matplotlib也还提供了了一种更便捷的修改样式方式,可以一次性修改多个样式。

mpl.rc('lines', linewidth=4, linestyle='-.')
plt.plot([1,2,3,4],[2,3,4,5])

在这里插入图片描述

1.4 修改matplotlibrc文件

我们还可以通过修改matplotlibrc文件的方式改变样式。

查找matplotlibrc文件的路径

mpl.matplotlib_fname()

找到路径后,就可以直接编辑样式文件了,打开后看到的文件格式大致是这样的,文件中列举了所有的样式参数,找到想要修改的参数,比如lines.linewidth,并将前面的注释符号去掉,此时再绘图发现样式以及生效了。
在这里插入图片描述

2. matplotlib的色彩设置(color)

在可视化中,如何选择合适的颜色和搭配组合也是需要仔细考虑的,色彩选择要能够反映出可视化图像的主旨。
从可视化编码的角度对颜色进行分析,可以将颜色分为色相、亮度和饱和度三个视觉通道。通常来说:

  • 色相: 没有明显的顺序性、一般不用来表达数据量的高低,而是用来表达数据列的类别。
  • 明度和饱和度: 在视觉上很容易区分出优先级的高低、被用作表达顺序或者表达数据量视觉通道。

在matplotlib中,设置颜色有以下几种方式:

2.1 RGB或RGBA

plt.style.use('default')
# 颜色用[0,1]之间的浮点数表示,四个分量按顺序分别为(red, green, blue, alpha),其中alpha透明度可省略
plt.plot([1,2,3],[4,5,6],color=(0.1, 0.2, 0.5))
plt.plot([4,5,6],[1,2,3],color=(0.1, 0.2, 0.5, 0.5))

在这里插入图片描述

2.2 HEX RGB 或 RGBA

# 用十六进制颜色码表示,同样最后两位表示透明度,可省略
plt.plot([1,2,3],[4,5,6],color='#0f0f0f')
plt.plot([4,5,6],[1,2,3],color='#0f0f0f80')

在这里插入图片描述

2.3 灰度色阶

# 当只有一个位于[0,1]的值时,表示灰度色阶
plt.plot([1,2,3],[4,5,6],color='0.5')

在这里插入图片描述

2.4 单字符基本颜色

# matplotlib有八个基本颜色,可以用单字符串来表示,分别是'b', 'g', 'r', 'c', 'm', 'y', 'k', 'w',对应的是blue, green, red, cyan, magenta, yellow, black, and white的英文缩写
plt.plot([1,2,3],[4,5,6],color='y')

在这里插入图片描述

2.5 颜色名称

# matplotlib提供了颜色对照表,可供查询颜色对应的名称
plt.plot([1,2,3],[4,5,6],color='tan')

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.6 使用colormap设置一组颜色

有些图表支持使用colormap的方式配置一组颜色,从而在可视化中通过色彩的变化表达更多信息。

在matplotlib中,colormap共有五种类型:

  • 顺序(Sequential)。通常使用单一色调,逐渐改变亮度和颜色渐渐增加,用于表示有顺序的信息。
  • 发散(Diverging)。改变两种不同颜色的亮度和饱和度,这些颜色在中间以不饱和的颜色相遇;当绘制的信息具有关键中间值(例如地形)或数据偏离零时,应使用此值。
  • 循环(Cyclic)。改变两种不同颜色的亮度,在中间和开始/结束时以不饱和的颜色相遇。用于在端点处环绕的值,例如相角,风向或一天中的时间。
  • 定性(Qualitative)。常是杂色,用来表示没有排序或关系的信息。
  • 杂色(Miscellaneous)。一些在特定场景使用的杂色组合,如彩虹,海洋,地形等。
 x = np.random.randn(50)
y = np.random.randn(50)
plt.scatter(x,y,c=x,cmap='RdPu')

在这里插入图片描述

# 这里展示一个偏态数据的例子,生产数据常常是右偏居多,此时发现由于数据有明显偏斜,导致使用colormap时无法看出显示较好的区分度
from scipy.stats import skewnorm
x = skewnorm.rvs(20, size=50)
y = np.random.randn(50)
plt.scatter(x,y,c=x,cmap='RdPu')

在这里插入图片描述

# 使用对数后再绘制散点图,得到了更好的色彩区分度
x_norm = np.log(x)
plt.scatter(x_norm,y,c=x_norm,cmap='RdPu')
plt.xlim((-3,1))

在这里插入图片描述
在以下官网页面可以查询上述五种colormap的字符串表示和颜色图的对应关系
https://matplotlib.org/stable/tutorials/colors/colormaps.html

3. 作业

3.1 查阅matplotlib官网,列举出Sequential,Diverging,Cyclic,Qualitative,Miscellaneous分别有哪些内置的colormap,并以代码绘图的形式展现出来。

3.1.1 Sequential

对于顺序图,亮度值通过颜色映射单调地增加。

cmaps = {}

gradient = np.linspace(0, 1, 256)
gradient = np.vstack((gradient, gradient))


def plot_color_gradients(category, cmap_list):
    # Create figure and adjust figure height to number of colormaps
    nrows = len(cmap_list)
    figh = 0.35 + 0.15 + (nrows + (nrows - 1) * 0.1) * 0.22
    fig, axs = plt.subplots(nrows=nrows + 1, figsize=(6.4, figh))
    fig.subplots_adjust(top=1 - 0.35 / figh, bottom=0.15 / figh,
                        left=0.2, right=0.99)
    axs[0].set_title(f'{category} colormaps', fontsize=14)

    for ax, name in zip(axs, cmap_list):
        ax.imshow(gradient, aspect='auto', cmap=plt.get_cmap(name))
        ax.text(-0.01, 0.5, name, va='center', ha='right', fontsize=10,
                transform=ax.transAxes)

    # Turn off *all* ticks & spines, not just the ones with colormaps.
    for ax in axs:
        ax.set_axis_off()

    # Save colormap list for later.
    cmaps[category] = cmap_list
    
plot_color_gradients('Perceptually Uniform Sequential',
                     ['viridis', 'plasma', 'inferno', 'magma', 'cividis'])

在这里插入图片描述

plot_color_gradients('Sequential',
                     ['Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
                      'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
                      'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn'])

在这里插入图片描述

plot_color_gradients('Sequential (2)',
                     ['binary', 'gist_yarg', 'gist_gray', 'gray', 'bone',
                      'pink', 'spring', 'summer', 'autumn', 'winter', 'cool',
                      'Wistia', 'hot', 'afmhot', 'gist_heat', 'copper'])

在这里插入图片描述

3.1.2 Diverging

plot_color_gradients('Diverging',
                     ['PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu', 'RdYlBu',
                      'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic'])

在这里插入图片描述

3.1.3 Cyclic

对于循环映射,我们希望以相同的颜色开始和结束,并在中间满足一个对称中心点。

plot_color_gradients('Cyclic', ['twilight', 'twilight_shifted', 'hsv'])

在这里插入图片描述

3.1.4 Qualitative

plot_color_gradients('Qualitative',
                     ['Pastel1', 'Pastel2', 'Paired', 'Accent', 'Dark2',
                      'Set1', 'Set2', 'Set3', 'tab10', 'tab20', 'tab20b',
                      'tab20c'])

在这里插入图片描述

3.1.5 Miscellaneous

plot_color_gradients('Miscellaneous',
                     ['flag', 'prism', 'ocean', 'gist_earth', 'terrain',
                      'gist_stern', 'gnuplot', 'gnuplot2', 'CMRmap',
                      'cubehelix', 'brg', 'gist_rainbow', 'rainbow', 'jet',
                      'turbo', 'nipy_spectral', 'gist_ncar'])

plt.show()

在这里插入图片描述

3.2 学习如何自定义colormap,并将其应用到任意一个数据集中,绘制一幅图像,注意colormap的类型要和数据集的特性相匹配,并做简单解释

在 Matplotlib 创建colormap

Matplotlib 有许多可通过 Matplotlib.cm.get_cmap 访问的内置彩色地图。还有像 palettable 这样的外部库,它们有许多额外的着色图。

然而,我们经常希望在 Matplotlib 创建或操作彩色图。这可以使用类 ListedColormap 或 LinearSegmentedColormap 来完成。从外部看,两个 colormap 类都将0到1之间的值映射为一组颜色。然而,还是有一些细微的差别,其中一些如下所示。

在手动创建或操作颜色映射之前,让我们首先了解如何从现有的颜色映射类中获取颜色映射及其颜色。

获取Colormap并访问它们的值

首先,可以使用返回 colormap 对象的 Matplotlib.cm.get _ cmap 来获得一个命名的 colormap,其中大多数都在 Matplotlib 的 Choosing Colormaps 中列出。第二个参数给出了用于定义颜色图的颜色列表的大小,下面我们使用了一个适度的值8,因此没有太多值可以查看。

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap

viridis = cm.get_cmap('viridis', 8)

对象 viridis 是一个可调用对象,当传递一个介于0和1之间的浮点数时,返回一个来自 colormap 的 RGBA 值:

print(viridis(0.56))

(0.122312, 0.633153, 0.530398, 1.0)

ListedColormap

将它们的颜色值存储在一个颜色属性中。可以使用 colors 属性直接访问组成 colormap 的颜色列表,也可以通过使用与 colormap 长度匹配的值数组调用 viridis 间接访问它。请注意,返回的列表是 RGBA nx4数组的形式,其中 n 是 colormap 的长度。

print('viridis.colors', viridis.colors)
print('viridis(range(8))', viridis(range(8)))
print('viridis(np.linspace(0, 1, 8))', viridis(np.linspace(0, 1, 8)))

viridis.colors [[0.267004 0.004874 0.329415 1. ]
[0.275191 0.194905 0.496005 1. ]
[0.212395 0.359683 0.55171 1. ]
[0.153364 0.497 0.557724 1. ]
[0.122312 0.633153 0.530398 1. ]
[0.288921 0.758394 0.428426 1. ]
[0.626579 0.854645 0.223353 1. ]
[0.993248 0.906157 0.143936 1. ]]
viridis(range(8)) [[0.267004 0.004874 0.329415 1. ]
[0.275191 0.194905 0.496005 1. ]
[0.212395 0.359683 0.55171 1. ]
[0.153364 0.497 0.557724 1. ]
[0.122312 0.633153 0.530398 1. ]
[0.288921 0.758394 0.428426 1. ]
[0.626579 0.854645 0.223353 1. ]
[0.993248 0.906157 0.143936 1. ]]
viridis(np.linspace(0, 1, 8)) [[0.267004 0.004874 0.329415 1. ]
[0.275191 0.194905 0.496005 1. ]
[0.212395 0.359683 0.55171 1. ]
[0.153364 0.497 0.557724 1. ]
[0.122312 0.633153 0.530398 1. ]
[0.288921 0.758394 0.428426 1. ]
[0.626579 0.854645 0.223353 1. ]
[0.993248 0.906157 0.143936 1. ]]

创建列出的Colormap

创建一个颜色映射实质上是上述操作的反向操作,我们为 ListedColormap 提供一个颜色规范的列表或数组来创建一个新的颜色映射。

定义一个辅助函数,它接受多个颜色映射中的一个作为输入,创建一些随机数据,并将颜色映射应用于该数据集的图像绘制。

def plot_examples(colormaps):
    """
    Helper function to plot data with associated colormap.
    """
    np.random.seed(19680801)
    data = np.random.randn(30, 30)
    n = len(colormaps)
    fig, axs = plt.subplots(1, n, figsize=(n * 2 + 2, 3),
                            constrained_layout=True, squeeze=False)
    for [ax, cmap] in zip(axs.flat, colormaps):
        psm = ax.pcolormesh(data, cmap=cmap, rasterized=True, vmin=-4, vmax=4)
        fig.colorbar(psm, ax=ax)
    plt.show()

在最简单的情况下,我们可以键入一个颜色名称列表,从中创建一个颜色图。

cmap = ListedColormap(["green", "yellow", "red", "black"])
plot_examples([cmap])

在这里插入图片描述
假设我们想要创建一个256个长度的“ viridis”colormap的前25个条目:

viridis = cm.get_cmap('viridis', 256)
newcolors = viridis(np.linspace(0, 1, 256))
pink = np.array([248/256, 24/256, 148/256, 1])
newcolors[:25, :] = pink
newcmp = ListedColormap(newcolors)

plot_examples([viridis, newcmp])

在这里插入图片描述
我们可以缩小彩色图的动态范围,这里我们选择了中间的一半。但是请注意,因为 viridis 是一个列出的彩色图,我们最终将得到128个离散值,而不是原始彩色图中的256个值。此方法不在颜色空间中插值以添加新的颜色。

viridis_big = cm.get_cmap('viridis')
newcmp = ListedColormap(viridis_big(np.linspace(0.25, 0.75, 128)))
plot_examples([viridis, newcmp])

在这里插入图片描述
我们可以很容易地连接两个colormap。

top = cm.get_cmap('Oranges_r', 128)
bottom = cm.get_cmap('Blues', 128)

newcolors = np.vstack((top(np.linspace(0, 1, 128)),
                       bottom(np.linspace(0, 1, 128))))
newcmp = ListedColormap(newcolors, name='OrangeBlue')
plot_examples([viridis, newcmp])

在这里插入图片描述
当然,我们不需要从命名的着色图开始,我们只需要创建 nx4数组来传递给 ListedColormap。在这里,我们创建一个从棕色(RGB: 90,40,40)到白色(RGB: 255,255,255)的彩色图。

N = 256
vals = np.ones((N, 4))
vals[:, 0] = np.linspace(90/256, 1, N)
vals[:, 1] = np.linspace(40/256, 1, N)
vals[:, 2] = np.linspace(40/256, 1, N)
newcmp = ListedColormap(vals)
plot_examples([viridis, newcmp])

在这里插入图片描述

# green:0,255,0; yellow:255,255,0; red:255,0,0; black:0,0,0
N = 128
vals_1 = np.ones((N, 4))
vals_1[:, 0] = np.linspace(0, 1, N)
vals_1[:, 1] = np.linspace(0.5,1, N)
vals_1[:, 2] = np.linspace(0, 0, N)
N = 124
vals_2 = np.ones((N, 4))
vals_2[:, 0] = np.linspace(1, 0.5, N)
vals_2[:, 1] = np.linspace(0, 0, N)
vals_2[:, 2] = np.linspace(0, 0, N)
N = 4
vals_3 = np.ones((N, 4))
vals_3[:, 0] = np.linspace(0, 0, N)
vals_3[:, 1] = np.linspace(0, 0, N)
vals_3[:, 2] = np.linspace(0, 0, N)
vals = np.vstack((vals_1, vals_2,vals_3))
newcmp = ListedColormap(vals)
plot_examples([newcmp])

在这里插入图片描述
使用创建的colormap绘制热力图:

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(100).reshape(10,10)
plt.imshow(x, cmap=newcmp, vmin=-1, vmax=1)
plt.colorbar()
plt.show()

在这里插入图片描述

参考资料

datawhale开源学习教程:https://nbviewer.org/github/datawhalechina/fantastic-matplotlib/blob/main/%E7%AC%AC%E4%BA%94%E5%9B%9E%EF%BC%9A%E6%A0%B7%E5%BC%8F%E8%89%B2%E5%BD%A9%E7%A7%80%E8%8A%B3%E5%8D%8E.ipynb

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值