你是否曾经觉得算法就是推荐系统的全部,即便不是全部,至少也是嫡长子,然而实际上,工程实现才是推荐系统的骨架。如果没有好的软件实现,算法不能落地产生效果,产品不能顺畅地服务用户,不能顺利地收集到用户的反馈,更不能让推荐系统往更好的方向进化。
一个好的推荐系统不仅仅是在线下模型评测指标多么好,也不仅仅是在某个时刻像灵光乍现一样击中用户某个口味,而是随着用户的不断使用,产品和用户一起变好,产品背后的人得到进步,用户也越来越喜欢产品。
虽然影响用户产品的因素有很多很多,但是能否流畅得给用户推荐服务是一个最基本的标准。
架构的重要性
推荐系统向来是一个锦上添花的东西,传统的观点是推荐系统更加注重线下模型的效果,而非线上的服务质量,然而,时至今日,推荐系统不再是锦上添花,而是承担了产品的核心功能。
因此,对推荐系统架构的要求也高了很多。
一个好的推荐系统应该具备这些特质:
1.实时响应请求
2.及时、准确、全面记录用户反馈;
3.可以优雅降级
4.快速实验多种策略
上一篇介绍了当下最热门的推荐系统产品形式-信息流的架构,信息流并不是传统意义上的推荐系统,今天要介绍一种更符合经典推荐系统的架构,这就是著名的流媒体Netflix的推荐系统架构。
通过这篇文章,我会为你介绍,实现一个简化版的推荐系统架构应该至少包含哪些元素,同时,我会带你一起总结出,一个经典推荐系统架构应该有的样子。
经典架构
这张图就是Netflix的推荐系统架构图。
我先整体看一下这个架构,一共分成三层:在线、近线、离线。何为近线?近线是通常不太提的一个概念,或者通常就把他归入了在线的范畴。
实际上,可以这样定义这三个层级:
1.离线:不用实时数据,不提供实时服务;
2.近线:使用实时数据,不保证实时服务;
3.在线:使用实时数据,