度量空间初探

本文介绍了集合的定义及三个基本性质,并深入探讨了度量空间的概念,给出了度量空间的定义及其满足的条件。文章通过举例和证明展示了如何构造度量空间,并讨论了几个特定情况下的度量空间实例,如实数向量空间和连续函数空间。
摘要由CSDN通过智能技术生成

集合: V V V

  G.Cantor在1895年作如是界说:“集合意谓吾人感知或思想中一些确定的,并且相互区别的对象汇集而成的整体,这些对象成为该集合的元素。”
  一般地,设 P P P为某个或某些条件的集合体,记 P ( u ) : = P(u):= P(u):=元素 u u u满足性质 P P P。则集合 V V V可以表示为
V = { x : P ( x ) } V=\left\{ x:P\left( x \right) \right\} V={ x:P(x)}
  集合具有三个基本性质:

  1. 确定性: ∀ x ,   x ∈ V \forall x,\text{ }x\in V x, xV异或 x ∉ V x\notin V x/V
  2. 互异性:同一个集合中的元素是互不相同的。
  3. 无序性:任意改变集合中元素的排列次序,它们仍表示同一个集合。

度量空间: ( V , d ) \left( V,d \right) (V,d)

定义
  度量空间是一个带二元运算 d : X × X → [ 0 , ∞ ] d:X\times X\to \left[ 0,\infty \right] d:X×X[0,]的集合 V V V,其中 d d d满足
i )   d ( x , y ) = 0   ⇔   x = y i i )   d ( x , y ) = d ( y , x ) , ∀ x , y ∈ V i i i )   d ( x , y ) ≤ d ( x , z ) + d ( z , y ) ,   ∀ x , y , z ∈ V \begin{matrix} i)\text{ }d\left( x,y \right)=0\text{ }\Leftrightarrow \text{ }x=y \\ ii)\text{ }d\left( x,y \right)=d\left( y,x \right),\forall x,y\in V \\ iii)\text{ }d\left( x,y \right)\le d\left( x,z \right)+d\left( z,y \right),\text{ }\forall x,y,z\in V \\ \end{matrix} i) d(x,y)=0  x=yii) d(x,y)=d(y,x),x,yViii) d(x,y)d(x,z)+d(z,y), x,y,zV
d ( x , y ) d\left( x,y \right) d(x,y) x , y x,y x,y之间的距离。


  条件 i i ) ,   i i i ) ii),\text{ }iii) ii), iii)等价于(可以被替换为)
d ( x , y ) ≤ d ( x , z ) + d ( y , z ) ,   ∀ x , y , z ∈ V d\left( x,y \right)\le d\left( x,z \right)+d\left( y,z \right),\text{ }\forall x,y,z\in V d(x,y)d(x,z)+d(y,z), x,y,zV

  1. ( ⇐ ) \left( \Leftarrow \right) ()
    事实上,在上式中令 z = x z=x z=x,则有
    d ( x , y ) ≤ d ( x , x ) + d ( y , x ) = 0 + d ( y , x ) = d ( y , x ) d\left( x,y \right)\le d\left( x,x \right)+d\left( y,x \right)=0+d\left( y,x \right)=d\left( y,x \right) d(x,y)d(x,x)+d(y,x)=0+d(y,x)=d(y,x)
    x = y ,   y = x x=y,\text{ }y=x x=y, y=x z = y z=y z=y,则有
    d ( y , x ) ≤ d ( y , y ) + d ( x , y ) = 0 + d ( x , y ) = d ( x , y ) d\left( y,x \right)\le d\left( y,y \right)+d\left( x,y \right)=0+d\left( x,y \right)=d\left( x,y \right) d(y,x)d(y,y)+d(x,y)=0+d(x,y)=d(x,y)
    因此有
    d ( x , y ) = d ( y , x ) d\left( x,y \right)=d\left( y,x \right) d(x,y)=d(y,x)
    即证得条件 i i ) ii) ii)。基于此,有
    d ( x , y ) ≤ d ( x , z ) + d ( y , z ) = d ( x , z ) + d ( z , y ) d\left( x,y \right)\le d\left( x,z \right)+d\left( y,z \right)=d\left( x,z \right)+d\left( z,y \right) d(x,y)d(x,z)+d(y,z)=d(x,z)+d(z,y)
    即证得条件 i i i ) iii) iii)
  2. ( ⇒ ) \left( \Rightarrow \right) ()
    { d ( x , y ) ≤ d ( x , z ) + d ( z , y ) d ( x , y ) = d ( y , x )   ⇒   d ( x , y ) ≤ d ( x , z ) + d ( y , z ) \left\{ \begin{aligned} & d\left( x,y \right)\le d\left( x,z \right)+d\left( z,y \right) \\ & d\left( x,y \right)=d\left( y,x \right) \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }d\left( x,y \right)\le d\left( x,z \right)+d\left( y,z \right) { d(x,y)d(x,z)+d(z,y)d(x,y)=d(y,x)  d(x,y)d(x,z)+d(y,z)

例子

  1. ∀ V ≠ ∅ ,   ∀ x , y ∈ V \forall V\ne \varnothing ,\text{ }\forall x,y\in V V=, x,yV,定义
    d ( x , y ) = { 1 ,   x ≠ y 0 ,   x = y d\left( x,y \right)=\left\{ \begin{aligned} & 1,\text{ }x\ne y \\ & 0,\text{ }x=y \\ \end{aligned} \right. d(x,y)={ 1, x=y0, x=y
    ( V , d ) \left( V,d \right) (V,d)是一个度量空间。
    证明

    1. ∀ x , y \forall x,y x,y d ( x , y ) ∈ { 0 , 1 }   ⇒   d ( x , y ) ≥ 0 d\left( x,y \right)\in \left\{ 0,1 \right\}\text{ }\Rightarrow \text{ }d\left( x,y \right)\ge 0 d(x,y){ 0,1}  d(x,y)0,且
      d ( x , y ) = 0   ⇔   x = y d\left( x,y \right)=0\text{ }\Leftrightarrow \text{ }x=y d(x,y)=0  x=y

    2. ∀ x ,   y \forall x,\text{ }y x, y,
      x = y   ⇒   d ( x , y ) = 0 x = y   ⇒   y = x   ⇒   d ( y , x ) = 0 }   ⇒   d ( x , y ) = d ( y , x ) x ≠ y   ⇒   d ( x , y ) = 1 x ≠ y   ⇒   y ≠ x   ⇒   d ( y , x ) = 1 }   ⇒   d ( x , y ) = d ( y , x ) \begin{aligned} & \left. \begin{aligned} & x=y\text{ }\Rightarrow \text{ }d\left( x,y \right)=0 \\ & x=y\text{ }\Rightarrow \text{ }y=x\text{ }\Rightarrow \text{ }d\left( y,x \right)=0 \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }d\left( x,y \right)=d\left( y,x \right) \\ & \left. \begin{aligned} & x\ne y\text{ }\Rightarrow \text{ }d\left( x,y \right)=1 \\ & x\ne y\text{ }\Rightarrow \text{ }y\ne x\text{ }\Rightarrow \text{ }d\left( y,x \right)=1 \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }d\left( x,y \right)=d\left( y,x \right) \\ \end{aligned} x=y  d(x,y)=0x=y  y=x  d(y,x)=0}  d(x,y)=d(y,x)x=y  d(x,y)=1x=y  y=x  d(y,x)=1}  d(x,y)=d(y,x)

    3. ∀ x , y \forall x,y x,y,
      x = y   ⇒   d ( x , y ) = 0 = 0 + 0 ≤ d ( x , z ) + d ( z , y ) x ≠ y   ⇒   ( x ≠ z ) ∨ ( y ≠ z )   ⇒   d ( x , z ) = 1   ∨   d ( z , y ) = 1 d ( x , z ) ,   d ( z , y ) ∈ { 0 , 1 } } ⇒ d ( x , z ) + d ( z , y ) ≥ 1 = d ( x , y ) \begin{aligned} & x=y\text{ }\Rightarrow \text{ }d\left( x,y \right)=0=0+0\le d\left( x,z \right)+d\left( z,y \right) \\ & \\ & \left. \begin{matrix} x\ne y\text{ }\Rightarrow \text{ }\left( x\ne z \right)\vee \left( y\ne z \right)\text{ }\Rightarrow \text{ }d\left( x,z \right)=1\text{ }\vee \text{ }d\left( z,y \right)=1 \\ d\left( x,z \right),\text{ }d\left( z,y \right)\in \left\{ 0,1 \right\} \\ \end{matrix} \right\} \\ & \Rightarrow d\left( x,z \right)+d\left( z,y \right)\ge 1=d\left( x,y \right) \\ \end{aligned} x=y  d(x,y)=0=0+0d(x,z)+d(z,y)x=y  (x=z)(y=z)  d(x,z)=1  d(z,y)=1d(x,z), d(z,y){ 0,1}}d(x,z)+d(z,y)1=d(x,y)

  2. V = R n V={ {\mathbb{R}}^{n}} V=Rn ∀ x = ( x 1 , x 2 , ⋯   , x n ) ,   y = ( y 1 , y 2 , ⋯   , y n ) ∈ R n \forall x=\left( { {x}_{1}},{ {x}_{2}},\cdots ,{ {x}_{n}} \right),\text{ }y=\left( { {y}_{1}},{ {y}_{2}},\cdots ,{ {y}_{n}} \right)\in { {\mathbb{R}}^{n}} x=(x1,x2,,xn), y=(y1,y2,,yn)Rn,定义
    d ( x , y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值